
www.studymafia.org

A

Seminar report

On

Object Oriented Programming
Submitted in partial fulfillment of the requirement for the award of degree

of Computer Science

 SUBMITTED TO: SUBMITTED BY:

 www.studymafia.org www.studymafia.org

www.studymafia.org

Acknowledgement

 I would like to thank respected Mr…….. and Mr. ……..for giving

me such a wonderful opportunity to expand my knowledge for my own

branch and giving me guidelines to present a seminar report. It helped me

a lot to realize of what we study for.

Secondly, I would like to thank my parents who patiently helped me as i

went through my work and helped to modify and eliminate some of the

irrelevant or un-necessary stuffs.

Thirdly, I would like to thank my friends who helped me to make my

work more organized and well-stacked till the end.

Next, I would thank Microsoft for developing such a wonderful tool like

MS Word. It helped my work a lot to remain error-free.

Last but clearly not the least, I would thank The Almighty for giving me

strength to complete my report on time.

www.studymafia.org

Preface

I have made this report file on the topic Object Oriented Programming;

I have tried my best to elucidate all the relevant detail to the topic to be

included in the report. While in the beginning I have tried to give a

general view about this topic.

My efforts and wholehearted co-corporation of each and everyone has

ended on a successful note. I express my sincere gratitude to

…………..who assisting me throughout the preparation of this topic. I

thank him for providing me the reinforcement, confidence and most

importantly the track for the topic whenever I needed it.

www.studymafia.org

1. Introduction

Object-Oriented Programming (OOP) is the term used to describe
a programming approach based on objects and classes. The object-
oriented paradigm allows us to organise software as a collection of
objects that consist of both data and behaviour. This is in contrast to
conventional functional programming practice that only loosely
connects data and behaviour.

Since the 1980s the word 'object' has appeared in relation to
programming languages, with almost all languages developed since
1990 having object-oriented features. Some languages have even had
object-oriented features retro-fitted. It is widely accepted that object-
oriented programming is the most important and powerful way of
creating software.

The object-oriented programming approach encourages:

 Modularisation: where the application can be decomposed into
modules.

 Software re-use: where an application can be composed from

existing and new modules.

An object-oriented programming language generally supports five
main features:

 Classes

 Objects

 Classification

 Polymorphism

 Inheritance

What is OOP?

OOP is a design philosophy. It stands for Object Oriented Programming.

Object-Oriented Programming (OOP) uses a different set of

programming languages than old procedural programming languages (C,

Pascal, etc.). Everything in OOP is grouped as self sustainable "objects".

Hence, you gain reusability by means of four main object-oriented

programming concepts.

www.studymafia.org

In order to clearly understand the object orientation model, let’s take your

“hand” as an example. The “hand” is a class. Your body has two objects

of the type "hand", named "left hand" and "right hand". Their main

functions are controlled or managed by a set of electrical signals sent

through your shoulders (through an interface). So the shoulder is an

interface that your body uses to interact with your hands. The hand is a

well-architected class. The hand is being reused to create the left hand and

the right hand by slightly changing the properties of it.

 What is an Object?

An object can be considered a "thing" that can perform a set of related

activities. The set of activities that the object performs defines the object's

behavior. For example, the Hand (object) can grip something, or a Student

(object) can give their name or address.

In pure OOP terms an object is an instance of a class.

www.studymafia.org

2. Integration of Objects and Logic

In the tentative of taking advantages of the modularization and

reusability provided by object-oriented languages and of the

inference of knowledge provided by logic languages, several

alternatives has been analyzed. These alternatives of integration

can be characterized in two main lines: extension of logic

programming with object-oriented programming concepts and

extension of object-oriented programming languages with logic

programming concepts.

Extension of logic programming with object-oriented

programming concepts

The building of large systems with logic languages presents

well-known problems of performance. Furthermore, these

systems cannot be reused because of their complexity. For this

reason, great efforts have been made for modularizing logic

programs.

Several object-oriented languages have been designed to

incorporate modularity to logic languages. Generally, these

languages have a Prolog-like syntax. As example, the

languages CPU [Mello, 1987], SPOOL [Fukunaga, 1986],

LOO [Marcarella, 1995] and SCOOP [Vaucher, 1988] can be

mentioned. These languages show different alternatives to

incorporate modularity in logic programming from the use of

object-orientation concepts.

These languages define classes as a set of clauses, where each

clause is a method. Inheritance is managed in two different

www.studymafia.org

ways for these languages. For introducing these two

alternatives, let two classes A and B (B as subclass of A)

composed by the following methods in form of clauses:

Class A:

qualification(Student, 'A') :-

 passed(Student, finalTest).

passed(Student, finalTest) :-

 passed(Student, exercise1),

passed(Student, exercise2).

Class B:

passed(Student), finalTest) :-

 passed(Student, exercise4).

Inheritance is viewed from two points of view. The first

considers that clauses in a subclass with the same head that

those clauses in the superclass not redefines those methods. In

this case, objects B use the clauses defined in A more the

classes defined in B. This conjunction of clauses for

representing inheritance not accept the redefinition of methods.

In the example, an object of class B has all the clauses defined

in A and B available. In the example, an object B has two ways

of considering satisfactory student's final test: when the student

passes the exercise 1 and 2, and when he passes the exercise 4.

The second inheritance view is when a clause in a subclass

with the same name that those clauses in the superclass

redefines those inhered methods. This combination of clauses

is one that rewrites clauses with the same name, allowing thus

the redefinition of clauses.

www.studymafia.org

In the example, an object of class B has all the clauses defined

in B more the clauses of A with head different of the all clause

of B are available. In the example, an object B has one way of

considering satisfactory student's final test: when the student

passes the exercise 4.

In the first alternative, a subclass can add new clauses with the

same name, but it can not redefine clauses; in the second, it is

considered the alternative in which the subclass redefine

clauses with the same name, but it can not add clauses with the

same name.

The examples above show two possibilities of combining

logical modules by means of inheritance: the first alternative

was adopted by SPOOL [Fukunaga, 1986] and the second by

SCOOP [Vaucher, 1988]. Both combinations of logical

formulae are useful in the programming of object-oriented

applications.

Extension of object oriented programming with concepts of

logic programming

The object-oriented programming has certain advantages over

other paradigms. These advantages are information hiding,

inheritance and modularity. However, in some applications is

necessary to manipulate knowledge responding to some kind of

logic that logic languages provide. For this reason, the

possibility to add knowledge in a declarative form to an object-

oriented program became relevant. Examples of languages that

integrate knowledge in objects are shown in [Ishikawa, 1986]

and [Amaral, 1993]. These languages allow the creation of a

knowledge base in each object and the management of it

through a set of facilities.

Both of the extensions presented in this paper are in this last

category. The reason is that agents behave as objects from an

action point of view and internally manage logical relationships

for making intelligent decisions.

www.studymafia.org

3. JavaLog: integrating Java and Prolog

JavaLog is an integration of Java and Prolog that allows the

resolution of problems using both languages. This capability of

interaction between Prolog and Java enable us to take

advantageous of the facilities of both paradigms.

This integration has been entirely developed in Java. The

development of JavaLog has been made in two stages. In the

first stage, a Prolog interpreter was designed and implemented

in Java. In the second stage, the machinery that supports the

codification of Java methods in Prolog and the use of Java

objects in Prolog programs was developed.

The next two subsections present the integration from Java to

Prolog and from Prolog to Java.

3.1. Java using Prolog

The possibility of writing Prolog code inside Java programs

allows the production of natural solutions to problems that

requires logic inference. These problems are common in

intelligent agents since the mental attitudes of agents are

supported by particular logics.

By means of a preprocessor is possible to embed Prolog into a

Java program. JavaLog marks between the strings ”{%”

and “%}” the Prolog code included in Java methods. For

example, the code below shows a Java method that is part of

the implementation of an intelligent agent. These intelligent

agents generate plans to achieve their goals. Here, the Prolog

code between the marks generates an agent plan. A planning

algorithm written in Prolog generates the plan. In the example,

www.studymafia.org

the characters “#” are used to include Java variables in the

Prolog code.

LinkGraph links = new LinkGraph(50);

Graph constraints = new Graph(50);

links.initialize(PlList.empty());

boolean prologResult;

{% getActions(Domain),

 planning(Domain, #links#, #constraints#). %}

This integration of objects and logic requires the existence of

the following variables in the scope where the embedded

Prolog is located:

 A variable named prologResult of type boolean.

 An instance of the Prolog interpreter in prolog.

 All Java variables declared between “#”.

Another use of Prolog does not preprocess the code. It consists

of the inclusion of atoms with the form $i in the Prolog

program, where $i denotes the i-th array element composed of

Java objects. When $i is used in the Prolog program, the i-th

array element is taken and it is converted to a Prolog-

compatible object.

The example below shows a Prolog predicate that returns true

if it can successfully send the message size to the object in the

location $0 (an instance of Person class) and the predicate

stores its result in the Prolog variable X. In this example, the

variable X=’Ann’, the name of the person that is sent as

argument.

...

Object obj[] = {new Person};

prolog.call(''send($0,age,[],X)'', obj);

...

www.studymafia.org

3.2. Using Java objects from Prolog clauses

This connection allows the use of Java objects in a Prolog

program. A Java object is like a Prolog atom, but it can receive

messages. Prolog has been extended to send messages to Java

objects embedded in a Prolog program. By means of these

extensions it is possible to overcome the well-known Prolog's

efficiency problems.

There are two ways to use Java objects in Prolog:

 Creating new instances of a class in a clause body in

Prolog.

 Passing objects as arguments to the Prolog interpreter,

and then using the objects in a clause body.

The creation of new instances of a class is made by the new

predicate. It receives three arguments: Class, Arguments,

Object; when new(Class, Arguments, Object) is evaluated, it

generates a new instance of Class using the constructor with

the same number and type of arguments as Arguments, finally

it stores the new object in Object.

For example, the evaluation of new('java.util.Vector',[10],Vec)

generates a new instance of java.util.Vector using the

constructor that receives an integer (in this case, the number

10) as argument, then it stores the new vector in Vec.

It is also possible to send messages to Java objects from a

clause body using an especial Prolog predicate: send. The send

predicate allows the sending of a message to a Java object. The

message can include arguments. It supports two types of

arguments: Prolog objects or Java objects.

The evaluation of send(Object, Message, Arguments, Result)

has the following steps:

1. It obtains the runtime class of the object Object.

2. It obtains the public member methods of the class of Object

and its superclasses. After that, for each method mi:

www.studymafia.org

(a) If the name of the method mi is Message and the number of

arguments of mi is equal to the length of Arguments, then, each

element ai of Arguments is converted to the same class of the i-

th method's formal parameter type.

(b) If no method matches, the method send fails.

3. The method mi is invoked with Arguments.

4. If mi returns an object, it is converted to a Prolog-compatible

form.

When a Java object sends a message to an object it knows the

class of the object, the message's name and method's formal

parameter types. These data are provided at compile-time by

the Java compiler. Prolog does not have all the information

about classes and methods, because the send predicate is not

compiled. For this reason, JavaLog obtains the information that

describes classes and methods at runtime.

There are four rules that describe the compatibility between

Java and Prolog types. These rules are applied when the send

predicate is evaluated, and the arguments of the message

include a Prolog object:

1. If the parameter type is consistent with the formal parameter

type of the message, no explicit conversion is done.

2. If the formal parameter type is consistent with String, the

parameter is converted to a String.

3. If the formal parameter type is consistent with int, a

conversion of the parameter to Integer is made.

4. If the parameter type is a wrapper of a Java object,

compatibility between the parameter and a Java object is

verified.

When JavaLog evaluates the send predicate it only knows the

receptor of the message, the message name and the arguments.

With this information, JavaLog obtains the object class and its

superclass. Then, it searches a method with the desired name

www.studymafia.org

and compatible arguments. Finally, if the method is found, it is

invoked.

The inclusion of Java objects in Prolog is made possible by

using wrappers. A Java object with an associate wrapper

acquires the same behavior than a Prolog atom. In this way, a

Java object within Prolog is like an atom, but it can be used in

the send predicate.

The next paragraphs show an example of the use of Java

objects inside Prolog clauses:

There is an intelligent agent that needs to use a planning

algorithm to generate a plan to achieve its goals. The

planning algorithm has been written in Prolog, using all its

capabilities in unification and backtracking. The result of

the algorithm is a plan, that is, a set of partially ordered

actions that the agent has to follow. The plan is represented

by a directed graph. The planning algorithm uses another

graph to detect when a newly introduced action interferes

with past decisions.

In the described situation, a typical representation for a

graph using Prolog is a list containing the edges. Each

element of the list is a pair [ai,bi]that represents an edge

(ai,bi) in the graph. The algorithm needs to known the

existence of an edge. This action involves a search over all

the list of edges. In Java, in contrast, the same results can be

achieved by using an adjacency matrix, in which an edge

(ai,bi) appears in the matrix as an element in the position i, j.

Thus, to know the existence of an edge in the graph using an

adjacency graph it is only necessary to read one position of

the matrix.

By using JavaLog it is possible to implement the planning

algorithm in Prolog taking advantages of preconditions

matching and backtracking and to use Java for implementing

the action graph taking advantageous of the Java efficiency

achieved in the representation and searching in graphs.

www.studymafia.org

The usage of Java objects in a Prolog program requires a

special treatment, since an object with an associated wrapper

does not have the same behavior than standard Prolog atoms. A

Prolog variable can change its state only once; on the other

hand, a Java object can change its state every time that it

receives a message. It affects the normal way of Prolog

programs since objects changes their state during the normal

recursion. The cause of this is that a Java object with a wrapper

associated is only a reference to a Java object.

The existence of Java objects inside Prolog clauses has one

important implication: in a recursive Prolog clause that uses

Java objects the programmer has to consider the necessity to

save/restore Java objects at the beginning and end of a clause

respectively.

Two implementations of the POP [Weld, 1994] planning

algorithm have been made to measure the improvements of

JavaLog over traditional Prolog. One of the experiences has

been made using only Prolog. The other experience has been

implemented using JavaLog in which Prolog was used for

implementing the general planning algorithm and Java was

used to manage the action graph of restrictions.

These two versions of the algorithm have been tested using the

Sussman anomaly problem as input. The implementations were

executed using the following resources: Pentium 233 Mhz,

32 MB of RAM, JDK 1.1.3 on GNU/Linux 2.0 and JavaLog.

After ten iterations, the results show the potentiality of the

integration offered by JavaLog:

 Using only Prolog: 20.124 sec.

 Using JavaLog: 4.047 sec.

The difference in performance is due to the representation of

the directed graph of restrictions in Java by using an adjacency

matrix. In this way, the time O(n) (n is the number of

restrictions) that takes the process of consistency check in the

www.studymafia.org

Prolog version of the algorithm is reduced to O(1) by

combining Java and Prolog.

4. OWB: Integrating Smalltalk and Prolog

Object With Brain (OWB) integrates Smalltalk objects and

Prolog clauses allowing objects to define part of its private

knowledge with logic clauses and methods implemented

partially or fully in Prolog. The design of this integration is

based on the following points:

1. Meta-objects which manage knowledge in logic format as a

part of objects. These objects have no conscience about meta-

level that adds this functionality.

2. Logic modules that encapsulate logic clauses. These modules

can be located in instance variables and methods, and they can

be combined for using in queries.

3. The possibility that objects can become clauses and that

clauses can use objects as constant type.

In the following section, details of the integration of Smalltalk-

Prolog-Smalltalk are exposed.

4.1. Smalltalk objects using Prolog

Simple objects, generally, have not the capability to manage

knowledge in logic format. The possibility that old or new

objects manage this type of knowledge will make feasible that

these objects combine and infer knowledge without using

complex algorithms. By using meta-objects, this problem has

been solved. A meta-object with knowledge associated to a

particular object allows the usage of a protocol defined to

manage knowledge in logic format.

On the other hand, in OWB, an object may have instance

www.studymafia.org

variables of any object class, including objects of the

LogicModule class. This class of objects represents logic

modules defined as sets of clauses expressed in Prolog syntax.

A logic module encapsulates a set of clauses and it can be

combined in defined ways. The logic modules aim the

modularization of logic programs.

In this way, an object can have private knowledge expressed in

logic form, through rules and facts, which are available only in

methods of the own object class. An object can have zero, one

or more instance variables referring clauses, allowing thus the

separation of concepts that the developer wishes to record in

different variables. For example, let a Professor class that

define instance variables in which each professor can register

his way for evaluating students of a course, for accepting

requests of new students and for altering his schedule.

OWB allows classes to use logic modules as method parts. This

enables classes to record facts and rules that represent common

knowledge for their instances.

The logic modules defined in class methods represent common

knowledge of the objects of that class. Those logic modules

that are defined in the instance variables of objects represent

proper knowledge of each object. Figure 1 shows a distribution

of logic modules.

 Figure 1 – Logic modules.

módulos lógicos
en métodos

módulos lógicos
en objetos

www.studymafia.org

An important point in the use of variables with logic

knowledge is that an object can have some instance variables to

register different views of the same concept. These views can

be used separately or can be combined using operators defined

for such goal. For example, the Professor class above

mentioned may have different instance variables (a, b and c) to

register different ways for evaluating changes of his schedule

from some request. In this way, a professor, in front of a

particular situation, can use one of these forms (achieved by

one of these variables) or one of its combinations.

The following operators have been defined and implemented

by combining logic modules referenced by variables:

 re-write: let the knowledge bases a and b, “a reWrite b''

define a logic module that contains all clauses defined

in b added to the clauses defined in a whose head name

is not the same of some clause of b.

 plus: let the knowledge bases a and b, “a plus b'' define a

logic module which contains all clauses of a and b.

Figure 2 shows how an object may have multiple instance

variables with logic knowledge and how this object can be

combined using the plus operator. The addKnowledge()

message make available the logic module sent as argument in

knowledge meta-object associated with the base object. This

knowledge can be queried from this moment.

addKnowledge: (ap1 plus: ap2)

...

pass(Student, test):- pass(Student, ex1),

pass(Student,ex2).

aprobado(Alumno,prueba):-aprobado(Alumno,ex4).

a meta-object

an object

pass(Student, test):-
 pass(Student, ex1), aprobado(Alumno,ex2).

pass(Student, test):- pass(Student, ex4).

variable ap1

variable ap2

www.studymafia.org

Figure 2 - Combining logic modules.

Furthermore, an object can have defined in its class methods,

which are written in Smalltalk 80, both methods fully

implemented in logic and methods that combine Smalltalk and

Prolog.

This integration allows the combination of Smalltalk and

Prolog syntax in a method to express declarative knowledge in

declarative form and operational behavior in procedural form.

However, both forms of programming share the same world.

For this reason, both forms can access to the same information.

So, objects can work with clauses and clauses can work with

objects.

4.2. Prolog using Smalltalk objects

In the body of Prolog clauses it is possible to send messages to

objects, to create new objects and to use objects as atoms.

Furthermore, a logic module in a method, which is between

double braces, can use local, global, or class variables and any

method arguments directly in its clauses. The following

example shows how the student referenced by anStudent

variable, which is passed as parameter of eval method is used

in qualification clauses.

eval: anStudent

{{qualification({anStudent}, 'A') :-

 finalTest({anStudent, passed).

 qualification({anStudent}, 'B') :-

 finalTest({anStudent}, unpassed),

www.studymafia.org

 exercises({anStudent}, passed).}

5. Conclusions

In this paper the basis for the development of software

intelligent agents from the programming point of view has been

presented. Two alternatives were presented. The difference

between the presented options is based on the typed

characteristics of programming languages used. Smalltalk

allows the easy usage of dynamic structures such meta-objects.

Java in contrast involves code preprocessing and the necessity

to consider types compatibility.

On the other hand, the fact of that the Prolog interpreter was

implemented in the proper language allows extensions to this

interpreter. These extensions can supports the management of

mental attitudes.

www.studymafia.org

6. References

1. www.google.com

2. www.wikipedia.org

3. www.studymafia.org

4. www.pptplanet.com

http://www.google.com/
http://www.wikipedia.org/
http://www.studymafia.org/
http://www.pptplanet.com/

