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Preface 
 

I have made this report file on the topic Parasitic Computing; I have tried my best to elucidate 

all the relevant detail to the topic to be included in the report. While in the beginning I have tried 

to give a general view about this topic. 

 

My efforts and wholehearted co-corporation of each and everyone has ended on a successful 

note. I express my sincere gratitude to …………..who assisting me throughout the preparation of 

this topic. I thank him for providing me the reinforcement, confidence and most importantly the 

track for the topic whenever I needed it. 
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INTRODUCTION 

 

 The net is a fertile place where new ideas/products surface quite often. We have 

already come across many innovative ideas such as Peer-to-Peer file sharing, distributed 

computing etc. Parasitic computing is a new in this category. Reliable communication on the 

Internet is guaranteed by a standard set of protocols, used by all computers. The Notre Dame 

computer scientist showed that these protocols could be exploited to compute with the 

communication infrastructure, transforming the Internet into a distributed computer in which 

servers unwittingly perform computation on behalf of a remote node. 

 

 In this model, known as “parasitic computing”, one machine forces target computers 

to solve a piece of a complex computational problem merely by engaging them in standard 

communication. Consequently, the target computers are unaware that they have performed 

computation for the benefit of a commanding node. As experimental evidence of the principle 

of parasitic computing, the scientists harnessed the power of several web servers across the 

globe, which–unknown to them–work together to solve an NP complete problem. 

 

 Sending a message through the Internet is a sophisticated process regulated by layers 

of complex protocols. For example, when a user selects a URL (uniform resource locator), 

requesting a web page, the browser opens a transmission control protocol (TCP) connection to 

a web server. It then issues a hyper-text transmission protocol (HTTP) request over the TCP 

connection. The TCP message is carried via the Internet protocol (IP), which might break the 

message into several packages, which navigate independently through  

 

numerous routers between source and destination. When an HTTP request reaches its target 

web server, a response is returned via the same TCP connection to the user's browser. The 

original message is reconstructed through a series of consecutive steps, involving IP and TCP; 

it is finally interpreted at the HTTP level, eliciting the appropriate response (such as sending 

the requested web page). Thus, even a seemingly simple request for a web page involves a 

significant amount of computation in the network and at the computers at the end points. 
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 In essence, a `parasitic computer' is a realization of an abstract machine for a 

distributed computer that is built upon standard Internet communication protocols. We use a 

parasitic computer to solve the well known NP-complete satisfiability problem, by engaging 

various web servers physically located in North America, Europe, and Asia, each of which 

unknowingly participated in the experiment. Like the SETI@home project, parasitic 

computing decomposes a complex problem into computations that can be evaluated 

independently and solved by computers connected to the Internet; unlike the SETI project, 

however, it does so without the knowledge of the participating servers. Unlike `cracking' 

(breaking into a computer) or computer viruses, however, parasitic computing does not 

compromise the security of the targeted servers, and accesses only those parts of the servers 

that have been made explicitly available for Internet communication.  
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THE NP-COMPLETE PROBLEM 

 

 A problem is assigned to the NP (nondeterministic polynomial time) class if it is 

verifiable in polynomial time by a Nondeterministic Turing Machine (A nondeterministic 

Turing Machine is a "parallel" Turing Machine which can take many computational paths 

simultaneously, with the restriction that the parallel Turing machines cannot communicate.). A 

problem is NP-hard if an algorithm for solving it can be translated into one for solving any 

other NP-problem. NP-hard therefore means "at least as hard as any NP-problem", although it 

might, in fact, be harder. A problem which is both NP and NP-hard is said to be an NP-

Complete problem. Examples of NP-Complete problems are the traveling salesman problem 

and the satisfiability problem.    

 The `satisfiability' (or SAT) problem involves finding a solution to a Boolean 

equation that satisfies a number of logical clauses. For example, (x1 XOR x2) AND (x2 AND 

x3) in principle has 23 potential solutions, but it is satisfied only by the solution x1 = 1, x2 = 0, 

and x3 = 1. This is called a 2-SAT problem because each clause, shown in parentheses, 

involves two variables. The more difficult 3-SAT problem is known to be NP complete, which 

in practice means that there is no known polynomial-time algorithm which solves it. Indeed, 

the best known algorithm for an n-variable SAT problem scales exponentially with n . Here we 

follow a brute-force approach by instructing target computers to evaluate, in a distributed 

fashion, each of the 2
n
 potential solutions. 

         Travelling salesmen problem involves working out the shortest route that a fictional 

salesman would have to take to visit all possible locations on a hypothetical map. The more 

locations on the hypothetical map means more potential routes, and the longer it would take 

any single computer to crank through all possible combinations. But by sharing the job of 

working out which route is shortest, the total time it takes to solve any particular travelling 

salesman problem can be vastly reduced.  
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THEORY 

 

 To solve many NP complete problems, such as the traveling salesman or the 

satisfiability problem, a common technique is to generate a large number of candidate 

solutions and then test the candidates for their adequacy. Because the candidate solutions can 

be tested in parallel, an effective computer architecture for these problems is one that supports 

simultaneous evaluation of many tests.  

 

 Four Notre Dame professors recently discovered a new Internet vulnerability that is 

commonly known as "parasitic computing." The researchers found a way to "trick" Web 

servers around the world into solving logic math problems without the server's permission. 

The researchers found that they could tag a logic problem onto the check sum (the bit amount 

that is sent when a Web page is requested) and the Web server would process the request. 

When a Web page was requested without the correct check sum, the server would not respond 

to the request. 

 

 Each of the math problems that were tagged on to the request by the researchers was 

broken down into smaller pieces that were evaluated by servers in North America, Europe and 

Asia. The results from each were used to build a solution. Using a remote server, the team 

divided the problem into packages, each associated with a potential answer. The bits were then 

hidden inside components of the standard transmission control protocol of the Internet, and 

sent on their merry way.  
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 The major discovery in this experiment is that other computers are answering logical 

questions without knowledge of doing so. The work is performed without consent, creating an 

ethical dilemma. The technique does not violate the security of the unknowing server; it only 

uses areas that are open for public access. They find it useful because they found a way to use 

a computer elsewhere to solve a problem. 

 

 Here, the computer consists of a collection of target nodes connected to a network, 

where each of the target nodes contains an arithmetic and logic unit (ALU) that is capable of 

performing the desired test and a network interface (NIF) that allows the node to send and 

receive messages across the network. A single home parasite node initiates the computation, 

sends messages to the targets directing them to perform the tests, and tabulates the results. 

 

 Owing to the many layers of computation involved in receiving and interpreting a 

message, there are several Internet protocols that, in principle, could be exploited to perform a 

parasitic computation. For example, an IP-level interpretation could force routers to solve the 

problem, but such an implementation creates unwanted local bottlenecks. To truly delegate the 

computation to a remote target computer, we need to implement it at the TCP or higher levels. 

Potential candidate protocols include TCP, HITP, or encryption/ decryption with secure socket 

layer (SSL). 
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HOW  TO  TRICK  OTHER  PEOPLE’S  COMPUTERS  TO  

SOLVE  A  MATH  PROBLEM? 

 

 

 

 

Figure 1: Schematic diagram of our prototype parasitic computer.  A single parasite 

node  coordinates the computations occurring remotely in the Internet protocols. It sends 

specially constructed messages to some number of targeted nodes , which are web servers 

consisting of an arithmetic and logic unit (ALU) and a network interface (NIF).ie. a single 

home parasite node initiates the computation, sends messages to the targets directing them to 

perform the tests, and tabulates the results 

 

The communication system that brings you the Web page of your choice can be 

exploited to perform computations. In effect, one computer can co-opt other Internet 

computers to solve pieces of a complex computational problem. The enslaved computers 

simply handle what appear to be routine Web page requests and related messages, but the 

disguised messages ingeniously encode  

 

possible solutions to a mathematical problem. If the solution is correct, a message returns to 
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the original sender. The target computers are unaware that they have performed computation 

for the benefit of a commanding node 

 

Key component: 

The seemingly simple request for a Web page involves a significant amount of frenetic 

behind-the-scenes computation aimed at finding, delivering, and displaying the desired page. 

One key component, governed by the so-called transmission control protocol (TCP), involves 

a calculation to determine whether a chunk of data was delivered without error-CHECKSUM  

COMPUTATION. Information sent across the Internet is typically split into small chunks, or 

packets, that travel—often independently of each other—to their common destination. Each 

packet bears a header providing data about its source and destination and carrying a numerical 

value related to the packet's contents. When a computer receives a packet of information, it 

checks for errors by performing a calculation and comparing the result with the numerical 

value in the packet's header (see "How TCP error detection works," below). Such a calculation 

would detect, for example, the change of one bit from 0 to 1 or 1 to 0. Packets found to be 

corrupted are discarded.  
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COMPUTING WITH TCP 

 

 The implementation of parasitic computing exploits a reliability mechanism in the 

transmission control protocol (TCP). During package transfer across the Internet, messages 

can be corrupted, that is, the bits can change. TCP contains a checksum that provides some 

data integrity of the message. To achieve this, the sender computes a checksum and transmits 

that with the message. The receiver also computes a checksum, and if it does not agree with 

the sender's, then the message was corrupted  The sender of a TCP segment computes a 

checksum over the entire segment, which provides reliability against bit errors that might 

occur in transport.  

 

 

                Figure 2: TCP/IP segment used for parasitic computing 

 

 It inserts the complement of the checksum in the message. The receiver also 

computes a checksum in order to verify data integrity. The receiver drops an entire segment if 

its checksum does not add up, assuming  

 

that the message was corrupted in transit. Because TCP is reliable, a sender will retransmit 

each segment until it is acknowledged by the receiver. One property of the TCP checksum 



www.studymafia.org                
 

function is that it forms a sufficient logical basis for implementing any Boolean logic function, 

and by extension, any arithmetic operation3.To implement a parasitic computer using the 

checksum function we need to design a special message that coerces a target server into 

performing the desired computation. As a test problem we choose to solve the well known 

'satisfiability' (or SAT) problem, which is a common test for many unusual computation 

methods. 

 

The TCP checksum is exploited to answer the following question:  

Is a+b equal to c? 

The checksum value in a TCP packet is determined by c . The data contains 16-bit 

words a and b . TCP computes the checksum, if a+b != c , then TCP rejects the segment. 

Therefore, a message is a “valid” TCP segment if and only if a+b = c . 

 

Suppose one needs to find two numbers which add up to a certain value, a+b =c . One 

could generate guesses for a and b , add them, and test if the sum is equal to c . The checksum 

mechanism of TCP can be used to solve this problem. First, compute a checksum for the 

answer, c , as the data part of the the TCP segment. Next, send a TCP segment where the data 

part contains candidate addends ai and bi, as shown below. 

 

 

             

 

 Finally, continue to send TCP segments until one is received—meaning that the 

checksum was verified. For any ai+bj != c , the TCP segment is dropped because the checksum 

verification fails. Consequently, only the correct solution (where a+b=c ) is a “well-formed” 

TCP segment. The checksum in the TCP header     not c because the checksum 

computation is computed over the entire header and it is complemented. If the header fields 

are the same, the checksum computed for a packet with a and b as data is the same as that 
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computed for a packet with c and 0 (pad to keep length the same). figure 2 shows a schematic 

diagram of the specially constructed TCP segment that is used in our exploit. The first 20 

bytes are the IP header, the next 20 are the TCP header, and the last 4 bytes are the data. The 

values of a and b and the checksum (   ) are shown in blue. 

 

 The parasite node creates 2n specially constructed messages designed to evaluate a 

potential solution. The design of the message, exploiting the TCP checksum, is described in 

Fig. 2. These messages are sent to many target servers throughout the Internet. Note that while 

we choose the simpler 2-SAT case to illustrate the principle behind the coding, the method can 

be extended to code the NP complete 3-SAT problem as well, as explained in the 

Supplementary Information. The message received by a target server contains an IP header, a 

TCP header, and a candidate solution (values for xi). The operators in the Boolean equation 

determine the value of the checksum, which is in the TCP header. The parasite node injects 

each message into the network at the IP level (Fig. 1), bypassing TCP. After receiving the 

message, the target server verifies the data integrity of the TCP segment by calculating a TCP 

checksum. The construction of the message (Fig. 3) ensures that the TCP checksum fails for 

all messages containing an invalid solution to the posed SAT problem. Thus, a message that 

passes the TCP checksum contains a  

 

correct solution. The target server will respond to each message it receives (even if it does not 

understand the request). As a result, all messages containing invalid solutions are dropped in 

the TCP layer. Only a message which encodes a valid solution 'reaches' the target server, 

which sends a response to the 'request' it received. 

 

We have implemented the above scheme using as a parasitic node an ordinary desktop 

machine with TCP/IP networking. The targeted computers are various web servers physically 

located in North America, Europe, and Asia, each of which unwittingly participated in the 

experiment. As explained earlier, our parasite node distributed 2n messages between the 

targets. Because only messages containing valid solutions to the SAT problem pass through 

TCP, the target web server received only valid solutions. This is interpreted as an HTTP 

request, but it is of course meaningless in this context. As required by HTTP, the target web 
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server sends a response to the parasitic node, indicating that it did not understand the request. 

The parasite node interprets this response as attesting to the validity of the solution. As 

expected and by design, incorrect solutions do not generate responses for the web server. A 

typical message sent by the parasite, and a typical response from a target web server are 

included in the Supplementary Information. Our technique does not receive a positive 

acknowledgement that a solution is invalid because an invalid solution is dropped by TCP. 

Consequently, there is a possibility of false negatives: cases in which a correct solution is not 

returned, which can occur for two reasons. First, the IP packet could be dropped, which might 

be due to data corruption or congestion. Normally TCP provides a reliability mechanism 

against such events, but our current implementation cannot take advantage of this. Second, 

because this technique exploits the TCP checksum, it circumvents the function the checksum 

provides. The TCP checksum catches errors that are not caught  

 

 

in the checks provided by the transport layer, such as errors in intermediate  

routers and the end points. 

 

 Measurements show that the TCP checksum fails in about 1 in 210 messages. The 

actual number of TCP checksum failures depends on the communication path, message data, 

and other factors. To test the reliability of our scheme, we repeatedly sent the correct solution 

to several host computers located on three continents. The rate of false negatives with our 

system ranged from 1 in about 100 to less than 1 in 17,000. The implementation offered above 

represents only a proof of concept of parasitic computing. As such, our solution merely serves 

to illustrate the idea behind parasitic computing, and it is not efficient for practical purposes in 

its current form. Indeed, the TCP checksum provides a series of additions and a comparison at 

the cost of hundreds of machine cycles to send and receive messages, which makes it 

computationally inefficient. To make the model viable, the computation-to-communication 

ratio must increase until the computation exported by the parasitic node is larger than the 

amount of cycles required by the node to solve the problem itself instead of sending it to the 

target. However, we emphasize that these are drawbacks of the presented implementation and 

do not represent fundamental obstacles for parasitic computing. It remains to be seen, 
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however, whether a high-level implementation of a parasitic computer, perhaps exploiting 

HTTP or encryption/decryption could execute in an efficient manner. 

 

 It is important to note that parasitic computing is conceptually related but 

philosophically different for cluster computing, which links computers such that their 

cumulative power offers computational environments comparable to the best supercomputers. 

A prominent example of cluster computing is the SETI program, which has so far enlisted over 

2.9 million  

 

computers to analyse radio signals in search of extraterrestrial intelligence. In cluster 

computing, the computer's owner willingly downloads and executes software, which turns his 

computer into a node of a vast distributed computer. Thus, a crucial requirement of all cluster 

computing models is the cooperation of the computer's owner. This is also one of its main 

limitations, as only a tiny fraction of computer owners choose to participate in such 

computations. In this respect, parasitic computing represents an ethically challenging 

alternative for cluster computing, as it uses resources without the consent of the computer's 

owner. Although parasitic computing does not compromise the security of the target, it could 

delay the services the target computer normally performs, which would be similar to a denial-

of-service attack, disrupting Internet service. Thus, parasitic computing raises interesting 

ethical and legal questions regarding the use of a remote host without consent, challenging us 

to think about the ownership of resources made available on the Internet. Because parasitic 

computation exploits basic Internet protocols, it is technically impossible to stop a user from 

launching it. For example, changing or disrupting the functions that are exploited by parasitic 

computing would simply eliminate the target's ability to communicate with the rest of the 

Internet. In summary, parasitic computing moves computation onto what is logically the 

communication infrastructure of the Internet, blurring the distinction between computing and 

communication. We have shown that the current Internet infrastructure permits one computer 

to instruct other computers to perform computational tasks that are beyond the target's 

immediate scope. Enabling all computers to swap information and services they are needed 

could lead to unparalleled emergent behaviour, drastically altering the current use of the 

Internet. 
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CHECKSUM COMPUTATION: 

 

Figure 6 

 

 Figure 6 shows the TCP checksum.  The checksum is a simple function performed 

by all web servers (in TCP), which allows a recipient to check if the received message has 

been corrupted during transmission. The sender (parasitic node) breaks the message consisting 

of N bits into 16-bit words, shown as S1, S2,……, Sk.  The k words are added together using 

binary one’s-complement arithmetic, providing the sum denoted as SUM
P
 . Next, the sender 

performs a bit-wise complement on the checksum, so that every bit is flipped: a 0 becomes a 1 

and a 1 becomes a 0, obtaining . An example of a checksum and its complement are 

shown in the figure 6b. The sender incorporates the complement of the checksum into the 

header of the message  
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as shown in 6c.  The receiving computer (target) again breaks the received message into 16-bit 

segments and adds them together. The value of the checksum SUM
T
 calculated by the target is

+ SUM
P
 , the first term coming from the header and the second term being the 

contribution from S1 +S2+….. Sk  . As SUM
P
 and  are complementary, the checksum 

obtained by the receiver has to be 1111111111111111. If any bit along the message has been 

corrupted during transmission, the checksum obtained by the target will be different from all 

ones, in which case the target drops the message. A non-corrupted message is passed to the 

HTTP protocol, which will attempt to interpret its content. 

 

Figure 7. 
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 Figure 7 shows how satisfiability is decided  using checksum. The 2-SAT problem 

shown in fig 7a involves 16 variables {x 1; x 2;…..; x 16} and the operators AND (^) and 

XOR ( ).  The logical table of XOR, AND and the binary sum (+) is shown in fig 7b. In 

order to get a TRUE answer for P, each clause shown in separate parentheses in fig7a needs to 

be independently TRUE. To evaluate the value of P we generate a 32-bit message M that 

contains all 16 variables, each preceded by a zero. As an illustration, we show a possible 

solution E. TCP groups the bits of the received message in two 16-bit segment and adds them 

together . As shown in fig 7d, this will result in adding each (xi, xi+1 ) pair together where i is 

odd. The sum can have four outcomes. Comparing the sum with the (  ) column in the table 

in 7b, we notice that a TRUE answer for the XOR clause (xi xi+1) coincides with the (01) 

result of the (xi, x i+1) sum. Similarly, if the clause has an AND operator, (xi ^ xi+1) is true only 

when the checksum is (10). This implies that for a set of variables {x1, x2,……,x16} that 

satisfies P the checksum will be determined by the corresponding operators only (that is, a  

should give (01) for the sum check, and for ^ the sum is (10)). For illustration, in fig 7d we 

show the formal lineup of the variables, while in fig 7e we show an explicit example. The 

correct complemented checksum for E should be  = 10110110100110. In contrast, the 

parasitic computer places in the header the transmitted checksum Tc = 1001101001100110, 

which is uniquely determined by the operators in P. To turn the package into a parasitic 

message the parasitic node prepares a package, shown in fig 7f, preceded by a checksum Tc, 

and continued by a 32-bit sequence (S1, S2), which represent one of the 2
16

 potential solutions. 

If S1 and S2 do not represent the correct solution, then the checksum evaluated by the target 

TCP will not give the correct sum (111……11). The TCP layer at the target concludes that the 

message has been corrupted, and drops it. However, if S1 and S2 contain the valid solution, 

the message is sent  

 

to HTTP. The web server interprets the solution as an HTTP request; however, because it is 

not a valid HTTP request, the web server responds with a message saying something like 

`page not found’ . Thus, every message to which the parasite node receives a response is a 

solution to the posed SAT problem . 

 



www.studymafia.org                
 

ALGORITHM 
 

 An 8-variable 2-SAT problem problem is shown below. 

 

The solution vector,  } _ , has 8 elements that can range over 0 and 1. Thus there are 

2
8
  possible solutions for  _ .  The only correct solution to (1) is  =[1.0.1,1,1,1,1,0]

T
 Our 

algorithm tests each solution using a specially constructed TCP/IP packet. 

 

The high-level algorithm is: 

S = create TCP segment 

S.checksum = checksum 

Foreach  

                S.data = pad with zeroes( } _ s ) 

      send S 

      receive answer 

      if answer = true . write   is a solution 

 

First, we create a TCP segment that contains all the standard header information 

required by the protocol. Next the checksum field is set. The solution determines the 

checksum, therefore, there is a single checksum for all tests. In the main loop of the algorithm, 

a test solution is placed into the data field of the segment. Then the packet is sent, and we wait 

for an answer. A  

 

correct solution induces a response from the remote node. Therefore, a response means a 

correct solution. An incorrect solution is deduced by not receiving a response. This is done by 

timing out: if a response is not received within a certain amount of time it is presumed a 

negative answer. This is discussed in greater detail. 
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IMPLEMENTATION 

 

 In our implementation a single master node controls the execution of the algorithm. 

There are several ways to implement the basic algorithm discussed above. The two major 

choices are (a) concurrency and (b) connection reuse. Regarding (a), the master node can have 

many computations occurring in the web concurrently. Each concurrent computation requires 

a separate TCP connection to a HTTP host. Regarding (b), before a TCP connection can be 

used, it must be established. Once established, TCP segments can be sent to the remote host. 

When multiple guesses are sent in one connection, it is impossible to know to which guess a 

correct solution refers to. For example, suppose guess <b1 , c1 > and < b2 , c2>  are sent one 

after the other in a single connection. Further suppose that only one solution is correct. We 

expect to get one response back. But we cannot tell to which solution the response refers.  

 

 The implementation used in this paper is a prototype that is not designed for 

efficiency of execution. In our prototype implement there is no concurrency and each 

connection is used for exactly one computation. 
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 RELIABLE COMMUNICATIONS 

 

 Any message can get lost. In a reliable system, the sender of a message saves a copy 

of the message and waits for an acknowledgement of the message. If after some time, the 

sender has not received an acknowledgement, it will re-send the message (from the copy). The 

sender will continue to do this until an acknowledgement is received.  

 

 In general, there is no upper bound on how long a message might take to be 

delivered. Consequently, in a distributed system, it is not possible to distinguish between a lost 

message and a delayed message. Therefore, a message is assumed lost after some time-out 

period. A time-out value that is too small declares too many delayed messages as lost. On the 

other hand, a value that is too large unnecessarily slows down the system. 

 

 Our exploit circumvents the reliability mechanism in TCP. Furthermore, because an 

invalid solution fails the checksum, it is as if it never arrived. Therefore, the receiver will not 

send an acknowledgement of the message. There are two undesirable outcomes that could 

occur:  

 

 A false negative occurs when a packet for a valid solution is dropped due to a data 

corruption or  congestion. 

 A false positive occurs when a bit error changes an invalid result into an valid  result 

 

The latter is very rare statistically and all but impossible in practice. Although the 

former is also unusual, it is frequent enough that it should be considered further.    

     

 

 First, let’s consider the errors that are caught by the TCP checksum. Every 

transmission link (hardware devices such as ethernet) computes a checksum on its packets. 

The TCP checksum catches errors that pass the link checksum, but still have some data 

corruption. Because the data was not damaged in transmission (where it would have been 

caught by the transmission link checksum), it must have occurred in an intermediate system 
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(router, bridge, gateway, etc.) or at an end point (sender or receiver) [3]. Such errors occur 

very infrequently. 

 

 Research shows that the TCP checksum fails about 1 in 2
20

 messages [4]. The 

probability of receiving a false positive is the probability of a error times the probability that it 

changes an invalid solution into a valid solution. The probability of the latter event is 

infinitesimal. 

 

 Second, an IP packet might be dropped due to data corruption or congestion. The 

ordinary TCP reliability mechanism handles this, but it is disabled in our prototype. Our test 

show false negatives occur between 1 in about 100 and less than 1 in 17,000. The error rate is 

strongly correlated with the distance (number of hops) between end points.  

 

 DEALING WITH AN UNRELIABLE SYSTEM  

 

 This section describes two approaches to using this unreliable system. First, one 

could ask every question multiple times. The probability of false negatives is almost certainly 

uncorrelated. Therefore, if P  is the probability of a false negative, then P
n
 is the probability of 

n false negative, because P << 1 the likelihood of a false negative all but disappears for small 

values of n. 

 

 

 

 Second, one could ask a question, Q, and its complement !Q. Absent any errors, one 

will get exactly one response. If no response is received, one must assume that a problem 

occurred. Then, the questions should be asked again. This solution results in a reliable system, 

but requires the every question also have a complement. 

 

IMPLEMENTING THE 3-SAT PROBLEM 
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  In the checksum, one can use up to three variables without overflow, as 

1+1+1=112 . Thus a 3- SAT problem that has 3 variables per clause can be encoded in a way 

similar to the 2-SAT implementation described before, assuming that there are appropriate 

operators whose logical tables match the checksum. The algorithm described before does not 

have to be modified. The only change is how the packet is constructed. Each candidate 

solution has contains three 16-bit words, whish are added together and compared to answer the 

question: is a+b+c equal to d? 

 

 The sender computes the checksum over three 16-bit words and the header, as 

shown below. 

 

 

The data part of the packet contains three data words. Data words are constructed with 

zero padding, as done in the 2-SAT problem. On the receiver side, a checksum in computed 

over the TCP packet just as before. A response is sent only if a+b+c=d does indeed equal. The 

only difference is between this and the 2-SAT problem, is that the packet is 2 bytes longer. 
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FEATURES  OF PARASITIC COMPUTING 

 

 parasitic computing theoretically offers the chance to use the vast computational power 

of the whole Internet. 

 Several large computational problem can be solved  by engaging various web servers 

physically located in different parts of the world, each of which unknowingly 

participated in the experiment. 

 ethically challenging alternative for cluster computing, as it uses resources without the 

consent of the computer's owner. 

 parasitic computing does not compromise the security of the targeted servers, and 

accesses only those parts of the servers that have been made explicitly available for 

Internet communication.  
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DISADVANTAGES 

 Communication to computation ratio: 

Currently, Internet-wide parasitic problem solving is only a theoretical consideration, 

because the method employed by Mr Barabási and his colleagues is "computationally 

inefficient", as they admit. They had to invest hundreds of machine cycles to send and receive 

messages until they finally achieved the solution to their mathematical problem. To make 

parasitic computing really useful, the ratio between the invested communication and the 

resulting computation has to be dramatically improved. The Notre Dame researchers suggest 

that exploiting HTTP or encryption/decryption could solve the efficiency problem. 

 Delayed Services 

The legal aspects of parasitic computing are far from clear. The security of the target 

computer is in no way compromised. It is just simple communication, using only areas 

specifically earmarked for public access. But it could slow machines down by engaging them 

in a computational conversation, which would be similar to the disruption of Internet services 

by a denial-of-service attack. And there is only one way to prevent the parasites from sucking 

computational power out of your computer – disconnecting it. 
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CONCLUSION 

 

 Parasitic computing moves computation onto what is logically the communication 

infrastructure of the Internet, blurring the distinction between computing and communication. 

The Notre Dame scientists have shown that the current Internet infrastructure permits one 

computer to instruct other computers to perform computational tasks that are beyond the 

target's immediate scope. Enabling all computers to swap information and services they are 

needed could lead to unparalleled emergent behavior, drastically altering the current use of the 

Internet. 

 

 The implementation offered above represents only a proof of concept of parasitic 

computing. As such, the solution merely serves to illustrate the idea behind parasitic 

computing, and it is not efficient for practical purposes in its current form.  

 

Indeed, the TCP checksum provides a series of additions and a comparison at the cost 

of hundreds of machine cycles to send and receive messages, which makes it computationally 

inefficient. To make the model viable, the computation-to-communication ratio must increase 

until the computation exported by the parasitic node is larger than the amount of cycles 

required by the node to solve the problem itself instead of sending it to the target.  

 

However, these are drawbacks of the presented implementation and do not represent 

fundamental obstacles for parasitic computing. It remains to be seen, however, whether a high-

level implementation of a parasitic computer, perhaps exploiting HTTP or encryption/ 

decryption could execute in an efficient manner. 
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