
www.studymafia.org 
 

A 

 

 Seminar report  

 

On 

 

Blue Gene 
 

Submitted in partial fulfillment of the requirement for the award of degree 

Of Civil  

 

 

 

 

 

 

 

 

 

SUBMITTED TO:                SUBMITTED BY:                                                                              

                                              
www.studymafia.org                     www.studymafia.org                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.studymafia.org/
http://www.studymafia.org/


www.studymafia.org 
 

Preface 
 

I have made this report file on the topic Blue Gene; I have tried my best to elucidate all the 

relevant detail to the topic to be included in the report. While in the beginning I have tried to give 

a general view about this topic. 

 
My efforts and wholehearted co-corporation of each and everyone has ended on a successful 

note. I express my sincere gratitude to …………..who assisting me throughout the preparation 

of this topic. I thank him for providing me the reinforcement, confidence and most importantly 

the track for the topic whenever I needed it. 
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Introduction 
 

The first computer in the Blue Gene series, Blue Gene/L, developed through a partnership with 

Lawrence Livermore National Laboratory, cost US$100 million and is intended to scale to 

speeds in the hundreds of TFLOPS, with a theoretical peak performance of 360 TFLOPS. This is 

almost ten times as fast as the Earth Simulator, the fastest supercomputer in the world before 

Blue Gene. In June 2004, two Blue Gene/L prototypes scored in the TOP500 Supercomputer List 

at the #4 and #8 positions. 

On September 29, 2004, IBM announced that a Blue Gene/L prototype at IBM Rochester 

(Minnesota) had overtaken NEC's Earth Simulator as the fastest computer in the world, with a 

speed of 36.01 TFLOPS, beating Earth Simulator's 35.86 TFLOPS. The machine later reached a 

speed of 70.72 TFLOPS. 

 

Linux will be the main operating system for IBM's upcoming family of "Blue Gene" 

supercomputers--a major endorsement for the operating system and the open-source computing 

model it represents. The decision to adopt Linux came, in part, as a result of the growing size and 

strength of the open-source community. Thousands of developers around the world are 

participating in the evolution of Linux. Creating a new OS inside of IBM would require a 

massive engineering effort. 

 

On March 24, 2005, the US Department of Energy announced that Blue Gene/L broke its current 

world speed record, reaching 135.5 TFLOPS. This feat was possible because of doubling the 

number of racks to 32 with each rack holding 1,024 compute nodes. This is still only half of the 

final configuration with 65,536 compute nodes. The final Blue Gene/L installation will have a 

total of 65,536 compute nodes (i.e., 216 nodes) and an additional 1024 I/O nodes. Each compute 

or IO node is a single ASIC with associated DRAM memory chips. The ASIC integrates two 

PowerPC 440 embedded processors, a cache sub-system and communication sub-systems. Each 

node is attached to three parallel communications networks: a 3D toroidal network for peer-to-

peer communication between compute nodes, a collective network for collective communication, 

and a global interrupt network for fast barriers. The I/O nodes, which run the Linux operating 
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system, provide communication with the world via an Ethernet network. Finally, a separate and 

private Ethernet network provides access to any node for configuration, booting and diagnostics. 

 

Blue Gene/L compute nodes use on a minimal operating system supporting a single process 

thread, and lacking interrupts and virtual memory. To allow multiple programs to run 

concurrently, compute nodes can be partitioned into electronically isolated sets of nodes. The 

number of nodes in a partition must be a positive integer power of 2, and must contain at least 25 

= 32 nodes. The maximum partition is all nodes in the computer. To run a program on Blue 

Gene/L, a partition of the computer must first be reserved. The program is then run on all the 

nodes within the partition, and no other program may access nodes within the partition while it is 

in use. Upon completion, the partition nodes are released for future programs to use. 

 

With so many nodes, components will be failing frequently. Thus, the system will be able to 

electrically isolate faulty hardware to allow the machine to continue to run. 

In public relations terms, it is being positioned as the successor of IBM's Deep Blue chess 

computer; however it bears little architectural resemblance to Deep Blue. 
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Applications 

 Veselin Topalov, the challenger to the World Chess Champion title in 2010, confirmed in 

an interview that he had used a Blue Gene/P supercomputer during his preparation for the 

match.  

 The Blue Gene/P computer has been used to simulate approximately one percent of a 

human cerebral cortex, containing 1.6 billion neurons with approximately 9 trillion 

connections.  

 The IBM Kittyhawk project team has ported Linux to the compute nodes and 

demonstrated generic Web 2.0 workloads running at scale on a Blue Gene/P. Their paper, 

published in the ACM Operating Systems Review, describes a kernel driver that tunnels 

Ethernet over the tree network, which results in all-to-all TCP/IP connectivity. Running 

standard Linux software like MySQL, their performance results on SpecJBB rank among 

the highest on record 

 In 2011, a Rutgers University / IBM / University of Texas team linked the KAUST Shah 

een installation together with a Blue Gene/P installation at the IBM Watson Research 

Center into a "federated high performance computing cloud", winning the IEEE SCALE 

2011 challenge with an oil reservoir optimization application 
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Technical Details 

The performance spectrum 

In computing, FLOPS is an abbreviation of FLoating point Operations Per Second. This is used 

as a measure of a computer's performance, especially in fields of scientific calculations that make 

heavy use of floating point calculations. (Note: a hertz is a cycle (or operation) per second. 

Compare to MIPS -- million instructions per second.) One should speak in the singular of a 

FLOPS and not of a FLOP, although the latter is frequently encountered. The final S stands for 

second and does not indicate a plural. Computing devices exhibit an enormous range of 

performance levels in floating-point applications, so it makes sense to introduce larger units than 

the FLOPS. The standard SI prefixes can be used for this purpose, resulting in such units as the 

megaFLOPS (MFLOPS, 106 FLOPS), the gigaFLOPS (GFLOPS, 109 FLOPS), the teraFLOPS 

(TFLOPS, 1012 FLOPS), and the petaFLOPS (PFLOPS, 1015 FLOPS). 

 

A cheap but modern desktop computer using, for example, a Pentium 4 or Athlon 64 CPU, 

typically runs at a clock frequency in excess of 2 GHz and provides computational performance 

in the range of a few GFLOPS. Even some video game consoles of the late 1990s' vintage, such 

as the Gamecube and Dreamcast had performance in excess of one GFLOPS . 

 

The original supercomputer, the Cray-1, was set up at Los Alamos National Laboratory in 1976. 

The Cray-1 was capable of 80 MFLOPS (or, according to another source, 138–250 MFLOPS). In 

fewer than 30 years since then, the computational speed of supercomputers has jumped a 

millionfold. 

 

The fastest computer in the world as of November 5, 2004, the IBM Blue Gene supercomputer, 

measures 70.72 TFLOPS. This supercomputer was a prototype of the Blue Gene/L machine IBM 

is building for the Lawrence Livermore National Laboratory in California. During a speed test on 

24 March 2005, it was rated at 135.5 TFLOPS. Blue Gene's new record was achieved by 

doubling the number of current racks to 32. Each rack holds 1,024 processors, yet the chips are 
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the same as those found in high-end computers. The complete version will have a total of 64 

racks and a theoretical speed measured at 360 TFLOPS. 
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Major features 

The Blue Gene/L supercomputer was unique in the following aspects:  

 Trading the speed of processors for lower power consumption. Blue Gene/L used low 

frequency and low power embedded PowerPC cores with floating point accelerators. 

While the performance of each chip was relatively low, the system could achieve better 

performance to energy ratio, for applications that could use larger numbers of nodes. 

 Dual processors per node with two working modes: co-processor mode where one 

processor handles computation and the other handles communication; and virtual-node 

mode, where both processors are available to run user code, but the processors share both 

the computation and the communication load. 

 System-on-a-chip design. All node components were embedded on one chip, with the 

exception of 512 MB external DRAM. 

 A large number of nodes (scalable in increments of 1024 up to at least 65,536) 

 Three-dimensional torus interconnect with auxiliary networks for global communications 

(broadcast and reductions), I/O, and management 

 Lightweight OS per node for minimum system overhead (system noise). 
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Architecture Details 

 

Blue Gene/L (BG/L) is a scientific and engineering, message-passing, supercomputer that IBM is 

developing with partial funding from the U.S. Department of Energy Lawrence Livermore 

National Laboratory. A 64K node system is scheduled to be delivered to Livermore, while a 20K 

node system will be installed at the IBM T.J. Watson Research Center for use in life sciences 

computing, primarily protein folding. 

 

BG/L is built using system-on-a-chip technology in which all functions of a node (except for 

main memory) are integrated onto a single ASIC. This ASIC includes two 32- bit Power PC 

cores (the 440); the 440 was developed for embedded applications. Associated with each core is 

a 64- bit “double” floating-point unit (FPU) that can operate in SIMD mode. Each (single) FPU 

can execute up to two multiply-adds per cycle, meaning that the peak performance of the chip is 

8 floating-point operations per cycle. Each 440 has its own instruction and data caches (each 

32KB), a small L2 cache that primarily serves as a pre-fetch buffer, a 4MB shared L3 cache built 

from embedded DRAM, and a DDR memory controller. In addition, the logic for five different 

networks is integrated onto the ASIC. These networks include a JTAG control and monitoring 

network, a Gbit Ethernet macro, a global barrier and alert network, a “tree” network for 

broadcasts and combining operations such as those used in the MPI collective communications 

library, and a three dimensional torus network for point-point communications between nodes. 

The ASIC can be used as either an I/O node or as a Compute node. I/O nodes have their Ethernet 

macro connected to an external switch enabling connectivity to hosts, however they do not use 

the torus network. Compute nodes do not connect their Ethernet, and talk to the I/O nodes over 

the tree network. The Livermore machine will have 64 Compute nodes for each I/O node. I/O 

nodes will have at least 512MB and Compute nodes will have at least 256 MB of memory, 

depending on the cost of memory at the time of delivery. Because of the high level of integration 

and relatively low target clock speed (700 MHz target), the system is designed to deliver 

unprecedented aggregate performance at both low cost and low power consumption. At this 

clock rate, each node has a peak of 5.6 GFlops, while the 64K node system has a peak of 367 

Tera Flops. Each ASIC will consume only 12 watts of power. Because of the low power, a very 

high density of packaging can be achieved.Two compute ASICs and their associated memory are 
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packaged onto a compute card, 16 compute cards are mounted on a node card, and 16 node cards 

are packaged in a 512 node midplane. Two midplanes are packaged in a 1024 node rack, which 

is about the size of a large refrigerator. Because the 440 core does not contain shared memory 

support, the L1 caches of the two cores on the same ASIC are not coherent. Memory is 

consistent from the L2 on out, but software is required to appropriately manage the L1’s. The 

system can operate in one of two modes. In communications coprocessor mode, one core is 

responsible for computing while the other core handles most messaging functions. Careful 

software coordination is required in this mode to overcome the lack of L1 coherence. When 

configured in this mode, the peak performance of the 64K node system is 183 Tera Flops. In the 

second mode, “virtual node” mode, each core has its own memory space and each core is 

responsible for both computing and message handling; the system has two sets of network 

injection and reception FIFOs, so that both cores can simultaneously access the network 

interfaces. 
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Design and Analysis of the Blue Gene/L Torus Interconnection 

Network 

Torus Network 

 

Many of the design decisions were driven by simulation performance studies. The torus network 

uses dynamic routing with virtual cut through buffering. A torus was chosen because it provides 

high bandwidth nearest neighbor connectivity, which is common in scientific applications, but 

also for its scalability, cost and packaging considerations. A torus requires no long cables and, 

because the network is integrated onto the same chip that does computing, no separate switch is 

required. Previous supercomputers such as the Cray T3E have also used torus networks. Torus 

packets are variable in size – from 32 to 256 bytes in increments of 32 byte chunks. The first 

eight bytes of each  packet contain link level protocol information (e.g., sequence number) and 

routing information including destination, virtual channel and size. A 24-bit CRC is appended to 

each packet, along with a one byte valid indicator. The CRC permits link level checking of each 

packet received, and a timeout mechanism is used for retransmission of corrupted packets. The 

error detection and recovery protocol is similar to that used in IBM SP interconnection networks 

as well as in the HIPPI standard. For routing, the header includes six “hint” bits, which indicate 

in which directions the packet may be routed. For example, hint bits of 100100 means that the 

packet can be routed in the x+ and y- directions. Either the x+ or x- hint bits, but not both, may 

be set. If no x hops are required, the x hint bits are set to 0. Each node maintains registers that 

contain the coordinates of its neighbors, and hint bits are set to 0 when a packet leaves a node in 

a direction such that it will arrive at its destination in that dimension. These hint bits appear early 

in the header, so that arbitration may be efficiently pipelined. The hint bits can be initialized 

either by software or hardware; if done by hardware, a set of two registers per dimension is used 

to determine the appropriate directions. These registers can be configured to provide minimal 

hop routing. The routing is accomplished entirely by examining the hint bits and virtual 

channels, i.e., there are no routing tables. Packets may be either dynamically or statically (xyz) 

routed. Besides point-topoint packets, a bit in the header may be set that causes a packet to be 

broadcast down any dimension. The hardware does not have the capability to route around 

“dead” nodes or links, however, software can set the hint bits appropriately so that such nodes 
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are avoided; full connectivity can be maintained when there are up to three faulty nodes, 

provided they are not co-linear. 

 

The torus logic consists of three major units, a processor interface, a send unit and a receive unit. 

The processor interface consists of network injection and reception FIFOs. Access to these 

FIFOs is via the double FPU registers, i.e., data is loaded into the FIFOs via 128 bit memory 

mapped stores from a pair of FPU registers, and data is read from the FIFOs via 128 bit loads to 

the FPU registers. There are a total of 8 injection FIFOs organized into two groups: two high 

priority (for inter-node OS messages) and six normal priority FIFOs, which are sufficient for 

nearest neighbor connectivity. Packets in all FIFOs can go out in any direction. Each group of 

reception FIFOs contains 7 FIFOs, one high priority and one dedicated to each of the incoming 

directions. More specifically, there is a dedicated bus between each receiver and its 

corresponding reception FIFO. Up to six injection and six reception FIFOs may be 

simultaneously active. Each of the six receivers, as shown in Figure 1, has four virtual channels 

(VCs). Multiple VCs help reduce head-ofline blocking [4], but in addition, mesh networks 

including tori with dynamic routing, can deadlock unless appropriate additional “escape” VCs 

are provided. We use a recent, elegant solution to this problem, the “bubble” escape VC as 

proposed in BG/L has two dynamic VCs, one bubble escape VC that can be used both for 

deadlock prevention and static routing, and one high priority bubble VC. Each VC has 1 KB of 

buffering, enough for four full-sized packets. In addition to the VCs, the receivers include a 

“bypass” channel so that packets can flow through a node without entering the VC buffers, under 

appropriate circumstances. Dynamic packets can only enter the bubble escape VC if no valid 

dynamic VCs are available. A token flow control algorithm is used to prevent overflowing the 

VC buffers. Each token represents a 32B chunk. For simplicity in the arbiters, a VC is marked as 

unavailable unless 8 tokens (a full-sized packet) are available. However, token counts for packets 

on dynamic VCs are incremented and decremented according to the size of the packet. The 

bubble rules, as outlined in require that tokens for one full-sized packet are required for a packet 

already on the bubble VC to advance, but that tokens for two full-sized packets are required for a 

packet to enter the bubble VC, upon either injection, a turn into a new direction, or when a 

dynamic VC packet enters the bubble. This rule ensures that buffer space for one packet is 

always available after an insertion and thus some packet can always, eventually move. However, 
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we discovered that this rule is incomplete for variable-sized packets when our simulator 

deadlocked using this rule. With this rule, the remaining free space for one full-sized packet can 

become fragmented resulting in a potential deadlock. To prevent this, the bubble rules are simply 

modified so that each packet on the bubble is accounted for as if it were a fullsized (8 chunk) 

packet. Eight byte acknowledgement (ack-only) or combined token-acknowledgement (token-

ack) packets are returned when packets are either successfully received, or when space has freed 

up in a VC. Acknowledgements permit the torus send units to delete packets from their 

retransmission FIFOs, which are used in the error recovery protocol. The send units also arbitrate 

between requests from the receiver and injection units. Due to the density of packaging and pin 

constraints, each link is bit serial. The torus is internally clocked at onefourth the rate of the 

processor, so at the target 700 MHz clock rate, each torus link is 175 MB/sec. There are 

sufficient internal busses so that each of the 6 outgoing and 6 incoming links can be 

simultaneously busy; thus each node can be sending and receiving 1.05 GB/sec. In addition, 

there are two transfer busses (paths) coming out of each receiver that connect with the senders. 

Thus, a single receiver can have up to 4 simultaneous transfers, e.g., one to its normal reception 

FIFO, one to the high priority reception FIFO, and two to two different senders. 

 

Arbitration is distributed and pipelined, but occurs in three basic phases. It generalizes an 

approach used in [3] and represents tradeoffs between complexity, performance, and ability to 

meet timing constraints. First, each packet at the head of the injection or VC FIFOs decides in 

which direction and on what VC it prefers to move. For statically routed packets, there is only 

one valid choice, but dynamically routed packets may have many choices. The preferred 

direction and VC are selected using a modified “Join the Shortest Queue” (JSQ) algorithm as 

follows. The senders provide the receivers and injection FIFOs with a bit indicating both link and 

token availability for each VC in each direction. This bit vector is and-ed with a bit vector of 

possible moves constructed from the packet’s hint bits and VC. This defines the set of possible 

and available arbitration requests. In addition, the sender provides 2 bits for each VC indicting 

one of four ranges of available downstream tokens. Of all the possible and available dynamic 

direction/VC pairs, the packet selects the one with the most available downstream tokens. Ties 

are randomly broken. If no dynamic direction/VC combination is available, the packet will 

request its bubble escape direction/VC pair (if available), and if that is also unavailable, the 
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packet makes no arbitration request. This is a somewhat simplified description since bus 

availability must also be taken into account. In addition, when a packet reaches its destination, 

the “direction” requested is simply the corresponding reception FIFO. Second, since each 

receiver has multiple VC FIFOs (plus the bypass) an arbitration phase is required to determine 

which of the requesting packets in the receiver wins the right to request. If a high priority packet 

is requesting, it wins. Barring that, a modified “Serve the Longest Queue” (SLQ) is used, based 

on 2 bit (4 ranges) FIFO Fullness indicators, i.e., the packet from the most full VC (as measured 

to within the 2 bits of granularity) wins. However, this cannot always be used since doing so may 

completely block out a VC. Therefore, a certain (programmable) fraction of the arbitration cycles 

are designated SLQ cycles in which the above algorithm is used, while the remaining cycles 

select the winner 

randomly. A packet on the bypass channel always receives the lowest priority (unless it is a high 

priority packet). Third, the receivers and injection FIFOs present their requests to the senders. 

Note that on a given cycle a receiver will present at most one request to the senders. Thus each 

sender arbiter can operate independently. The sender gives highest priority to token-ack or ack-

only packets, if any. Barring that, the senders tend to favor packets already in the network and 

use a similar modified SLQ algorithm in which there are SLQ cycles and random cycles. In 

particular, a certain programmable fraction of cycles (typically 1.0) give priority to packets 

already in the network (unless the only high priority packet requesting is in an injection FIFO). 

On such cycles the modified SLQ algorithm is used. Higher priority can be given to injection 

packets by lowering above in-network priority fraction. On cycles in which injection packets 

receive priority (barring in-network high priority packets), the modified SLQ algorithm is also 

used. 
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Simulator Overview 

 

Given the complexity and scale of the BG/L interconnection network, having an accurate 

performance simulator was essential during the design phase of the project. Due to the potential 

size of such a model, simulation speed was a significant concern and a proven shared memory 

parallel simulation approach was selected. In particular, parallel simulation on shared memory 

machines has been shown to be very effective in simulating interconnection networks whereas 

success with message passing parallel interconnection network simulators is harder to come by 

.We also recognized the difficulties in developing an execution driven simulator for a system 

with up to 64K processes, and therefore decided upon a simulator that would primarily be driven 

by application pseudo-codes, in which message passing calls could be easily passed to the 

simulator; such calls include the time since the last call (the execution burst time), the destination 

and size of the message, etc. This pseudo-code included a subset of the MPI point to point 

messaging calls as a workload driver for the simulator. We also extended the IBM UTE trace 

capture utility that runs on IBM SP machines and were able to use such traces as simulator inputs 

(for up to several hundreds of nodes). The basic unit of simulation time is a network cycle, which 

is defined to be the time it takes to transfer one byte. As BG/L is organized around 512 node 

(8x8x8) midplanes, the simulator partitions its work on a midplane basis, i.e., all nodes on the 

same midplane are simulated by the same processor (thread) and midplanes are assigned to 

threads in as even a manner as possible. 

 

Because different threads are concurrently executing, the local simulation clocks of the threads 

need to be properly synchronized. To deal with this problem, we use a simple but effective 

“conservative” parallel simulation protocol known as “YAWNS” .In particular, we take 

advantage of the fact that the minimum transit time between midplanes is known and is at least 

some constant w≥1 cycles. In this protocol, time “windows” of length w are simulated in parallel 

by each of the threads. Consider an event that is executed during the window (starting at time t) 

on processor i that is destined to arrive on processor j in the future; such an event represents the 

arrival of the first byte of a packet. Since the minimum transit time is w, the arrival cannot occur 

during the current window, represented by the interval [t, t+w-1]. Processor i simply puts a 

pointer to the event on an i-to-j linked list. When each processor reaches the end of the window, 
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it enters a barrier synchronization. Upon leaving the barrier, each processor is sure that every 

other processor has executed all events up to time t+w-1 and that all inter-processor events are on 

the appropriate inter-processor linked lists. Processor j can therefore go through all its i-to-j 

linked lists, remove events from them, and put the events on its own future event list. Once this 

is done, the processors can simulate the next window [t+w, t+2w-1]. If w=1, then this protocol 

requires a barrier synchronization every cycle, however, on BG/L, the minimum inter-midplane 

delay will be approximately w=10 network cycles. When a large number of BG/L nodes are 

being simulated, each processor will execute many events during a window, i.e., between 

barriers, and thus the simulator should obtain good speedups. The simulator runs on a 16-way 

IBM “nighthawk” SMP with 64 GB of memory. The model of the torus hardware contains close 

to 100 resources per node (links, VC token counters, busses, FIFOs, etc), so that a full 64K node 

system can be thought of as a large queuing network with approximately 6 million resources. It 

consumes a large amount of memory and runs slowly; a 32K node simulation of fully loaded 

network advances at about 0.25 microseconds of BG/L time per second of wall clock time. 

However, it obtains excellent speedup, typically more than 12 on 16 nodes, and sometimes 

achieves superlinear speedup due to the private 8MB L3 caches on the SMP and the smaller per 

node memory footprint of the parallel simulator. The model, which was written before the 

VHDL, is thought to be a quite accurate representation of the BG/L hardware, although a number 

of simplifications were made. For example, in BG/L the arbitration is pipelined and occurs over 

several cycles. In the simulator, this is modeled as a delay of several cycles followed by 

presentation of the arbitration request. Because the simulator focuses on what happens once 

packets are inside the network, a gross simplification was the assumption that the injection 

FIFOs were of infinite size, and that packets are placed in these FIFOs as early as possible rather 

than as space frees up in the FIFOs. This has little effect on network response time and 

throughput measurements during the middle of a run, but can affect the dynamics particularly 

near the end of runs. The simulator also did not model the error recovery protocol, i.e., no link 

errors were simulated and the ackonly packets that are occasionally sent if a link is idle for a long 

time were not modeled. However, the arbitration algorithms and token flow control are modeled 

to a high level of detail. 
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Sample Performance Studies 

 

In this section, we present some examples of use of the simulator to study design trade-offs in 

BG/L. The studies presented are illustrative and sometimes use assumptions and corresponding 

parameters about the system that do not reflect the final BG/L design. 

 

Response Time in Light Traffic: Figure 2 plots the response time for various 32K node BG/L 

configurations when the workload driver generates packets for random destinations and the 

packet generation rate is low enough so that the average link utilization is less than one. This 

Figure compares static routing to dynamic routing with one or more dynamic VCs and one or 

more busses (paths) connecting receivers to senders. Simpler, random, arbitration rules than SLQ 

and JSQ were used and the plot was generated early in our studies when the target link 

bandwidth was 350 MB/sec. (The 350 MB/sec. assumption essentially only affects results by a 

rescaling of the y-axis.) The figure shows the clear benefit of dynamic over static routing. It also 

shows that there is little benefit in increasing the number of dynamic VCs unless the number of 

paths is also increased. Finally, it shows only marginal benefit in going from a 2 VC/2 path to 4 

VC/4 path configuration. 

 

All-to-All: MPI_AlltoAll is an important MPI collective communications operation in which 

every node sends a different message to every other node. plots the average link utilization 

during the communications pattern implied by this collective. The Figure again shows the benefit 

of dynamic over static routing. For this pattern, there is marginal benefit in going from 1 to 2 

dynamic VCs, but what is important is that the average link utilization is, at approximately 98%, 

close to the theoretical peak. This peak includes the overhead for the token-ack packets, the 

packet headers and the 4 byte CRC trailers. A reasonable assumption for the BG/L software is 

that each packet carries 240 bytes of payload, and with this assumption the plot shows that the 

payload occupies 87% of the links. Not shown in these plots is the fact that a very low 

percentage of the traffic flows on the escape bubble VC and that statistics collected during the 

run showed that few of the VC buffers are full. Three-dimensional FFT algorithms often require 

the equivalent of an All-to-All, but on a subset of the nodes consisting of either a plane or a line 
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in the torus. Simulations of these communications patterns also resulted in near-peak 

performance. The above simulation was for a symmetric BG/L. However, the situation is not so 

optimistic for an asymmetric BG/L. For example, the 64K node system will be a 64x32x32 node 

torus. In such a system, the average number of hops in the x dimension is twice that of the y and 

z dimensions, so that even if every x link is 100% busy, the y and z links can be at most 50% 

busy. Thus, the peak link utilization is at most 66.7%. Since 12% of that is overhead, the best 

possible payload utilization is 59%. However, we expect significantly more blocking and 

throughput degradation due to full VC buffers. Indeed a simulation of the All-to-All 

communications pattern on a 32x16x16 torus resulted in an average link utilization of 49% and 

payload utilization of 44%, corresponding to 74% of the peak. This figure is probably somewhat 

pessimistic due to the simulator artifact of infinite-sized injection FIFOs, which distorts the 

effects at the end of the simulation. We also believe that appropriate injection flow control 

software algorithms can reduce VC buffer blocking and achieve closer to peak performance. 

Nevertheless, the above study points out a disadvantage of the torus architecture for asymmetric 

machines in which the application cannot be easily mapped so as to result in a close proximity 

communications pattern. 

 

Virtual Channel Architecture: Here we consider several different deadlock prevention escape VC 

architectures. The first proposed has two escape VCs per direction. Each dimension has a 

“dateline.” Before crossing the dateline, the escape VC is the lower numbered of the pair, but 

after crossing the dateline the escape VC is the higher numbered of the pair. In addition we 

consider dimension ordered or direction ordered escape VCs. In dimension ordered, the escape 

VC is x first, then y if no x hops remain, then z if no x or y hops remain. In direction ordered, the 

escape VCs are ordered by x+, y+, z+, x-, y-, z- (other orderings are possible). We also consider 

dimension and direction ordered escape VCs for the bubble escape. We again use the hot region 

workload where the hot region starts at coordinates (0,0,0) and the datelines are set at the 

maximum coordinate value in each dimension. plots the throughput as a function of time. The 

dimension ordered dateline pair shows particularly poor and wild behavior, with a steep decline 

in throughput, followed by a rise and then another steep decline. plots the throughput on a per 

VC basis for a longer period of time. The decreasing and increasing bandwidth waves persist 

even over this much longer time scale. An appreciable fraction of the traffic flows on the escape 
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VCs, indicating a high level of VC buffer occupation. What causes these waves? First, the 

placement of the dateline causes an asymmetry in the torus, whereas the bubble escape is 

perfectly symmetrical in each dimension. Since there are two escape VCs, we thought it likely 

that packets at the head of the VC buffers could be waiting for one of the escape VCs but tokens 

are returned for the other escape VC. In such a situation, no packets could move even though the 

link may be available and downstream buffer space is available. To confirm this, the simulator 

was instrumented to collect additional statistics. In particular, we measured the fraction of time a 

token-ack is returned that frees at least one previously blocked packet to move. plots this 

unblocking probability along with the throughput as a function of time. The unblocking 

probability is relatively constant for the bubble (after the initial decline), but varies directly with 

the throughput for the dateline pair; when the unblocking probability increases, the throughput 

increases and vice-versa. 

 

Performance Verification: To verify the VHDL logic of the torus, we built a multi-node 

verification testbench. This testbench, which runs on the Cadence VHDL simulator, consisted of 

workload drivers that inject packets into the injection FIFOs, links between nodes on which bits 

could be corrupted to test the error recovery protocol, and packet checkers that pull packets out 

of the reception FIFOs and check them for a variety of conditions, such as whether the packet 

arrived at the correct destination and whether its contents were received correctly. The workload 

drivers could be flexibly configured to simulate a number of different traffic patterns. As we 

neared the end of the logic verification process, we wanted to ensure that network performance 

was as intended. One of the benchmarks we tested was the All-to- All. The VHDL simulator was 

limited (by memory) to a maximum of 64 nodes, so we simulated both a 4x4x4 torus and an 

8x8x1 torus and compared the average link utilizations to those predicted by the performance 

simulator. While these agreed to within 2%, the VHDL (corresponding to the actual network 

hardware) indicated that VC buffers were fuller than that predicted by the performance 

simulator. A close inspection of the arbitration logic revealed that a one cycle gap in the 

arbitration pipeline of the receivers could occur when all possible outgoing links/VCs were busy. 

This gap was sufficient to permit packets from the injection FIFOs to sneak into the network, 

leading to fuller VCs than intended. A simple fix to eliminate this possibility was implemented, 

and subsequent VHDL simulations indicated greatly reduced levels of VC buffer occupation. 
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Application 

 

 Machines like Blue Gene/L are designed to handle data-intensive applications like content 

distribution, simulations, and modeling, webserving, data mining or business intelligence. 

 

Another most important application is to predict how chains of biochemical building blocks 

described by DNA fold into proteins--massive molecules such as hemoglobin. Most biological 

functions involve proteins and while a protein's chemical composition is determined by a 

sequence of amino acids joined like links of a chain, a protein folds into a highly complex, three-

dimensional shape such as illustrated in the two figures below.  

 

                                          Fig 1. 

 

It is hypothesized that the shape of a protein is the principal determinant of its function. Arbitrary 

strings of amino acids do not, in general, fold into a well-defined three-dimensional structure, but 

evolution has selected out the proteins used in biological processes for their ability to fold 

reproducibly (sometimes with assistance, sometimes without) into a particular three-dimensional 

structure within a relatively short time. Some diseases are actually caused by slight misfoldings 

of a particular protein. Understanding the mechanisms that cause a string of amino acids to fold 

into a specific three-dimensional structure is an outstanding scientific challenge. Appropriate use 

of large scale biomolecular simulation to study protein folding is expected to shed significant 

light into this process. Extensive collaborations with the biological research community will be 

needed to find the best way of applying the unique computational resources available to the Blue 

Gene project to advance our understanding of protein folding. The level of performance provided 

by Blue Gene (sufficient to simulate the folding of a small protein in a year of running time) is 

expected to enable a tremendous increase in the scale of simulations that can be carried out as 

compared with existing supercomputers.   
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The scientific community considers protein folding one of the most significant "grand 

challenges" -- a fundamental problem in science or engineering that has broad economic and 

scientific impact and whose solution can be advanced only by applying high-performance 

computing technologies.  

 

Proteins control all cellular processes in the human body. Comprising strings of amino acids that 

are joined like links of a chain, a protein folds into a highly complex, three-dimensional shape 

that determines its function. Any change in shape  

dramatically alters the function of a protein, and even the slightest change in the folding process 

can turn a desirable protein into a disease.  

 

Better understanding of how proteins fold will give scientists and doctors better insight into 

diseases and ways to combat them. Pharmaceutical companies could design high-tech 

prescription drugs customized to the specific needs of individual people. And doctors could 

respond more rapidly to changes in bacteria and viruses that cause them to become drug-

resistant.  

 

The human genome is currently thought to contain approximately 40000 genes, which code for a 

much larger number of proteins through alternative splicing and post-translational modification, 

a molecular toolkit assembled to handle a huge diversity of functions. An understanding of how 

proteins function is essential for understanding the cell life cycle and metabolism, how cells send 

signals to their environment, and how cells receive and process signals from their environment. 

An understanding of protein structure and function can serve as a basis for innovation in new 

therapies, diagnostic devices, and even industrial applications.  When proteins fold into the 

wrong structure, the results can be fatal, e.g., “mad cow” disease probably results from an 

autocatalyzed wrong fold in the prion protein6 and cystic fibrosis is also connected with protein 

(mis)folding.  

 

Protein architecture. Protein architecture8 is based on three principles:  

 The formation of a polymer chain . 
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 The folding of this chain into a compact function-enabling structure, or native structure . 

 Post-translational modification of the folded structure . 

The protein chain (or peptide chain if short in length) is a heteropolymer built up from alpha 

amino acid monomers, as shown in Figure 2. The sequence of amino acid residues in the peptide 

chain is termed the primary structure of the protein. The 20 different choices for each amino acid 

in the chain give the possibility of enormous diversity, even for small proteins. For example, a 

peptide of 30 residues yields the astonishing number of about 2030, or approximately 1039, 

possible unique sequences. 

                                                        

Fig 2 

 

The protein folding problem. 

 

There are two important facets to the protein folding problem: prediction of three-dimensional 

structure from amino acid sequence, and understanding the mechanisms and pathways whereby 

the three-dimensional structure forms within biologically relevant timescales.  

 

The prediction of structure from sequence data is the subject of an enormous amount of research 

and a series of conferences that assess the state of the art in structure prediction.9 While this area 

is extremely important, good progress in the area of structural predictions has been made using 

only modest amounts of computational power. The effort described in this paper is aimed at 

improving our understanding of the mechanisms behind protein folding, rather than at structure 

prediction. Even though biologists have been most interested in structure prediction, there has 

been an increasing recognition of the role that misfolding of proteins plays in certain disease 

processes, notably Alzheimer's disease and mad cow disease.6 The section that follows describes 

some of the fundamental reasons for interest in the process of protein folding.  
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Current view of folding mechanisms.  

 

A simplistic but illustrative way of viewing protein folding is to note that the amino acid R 

groups (see Figure 2, caption) fall into three main classes: (1) charged, (2) hydrophilic (“water-

loving”), and (3) hydrophobic (“water-hating”). In the simplest picture, the folded state of the 

peptide chain is stabilized primarily (for a globular protein in water), by the sequestration of 

much of the hydrophobic groups into the core of the protein—out of contact with water, while 

the hydrophilic and charged groups remain in contact with water. The stability can be described 

in terms of the Gibbs free-energy change G            

                                                       G = H – TS,         

 where H is the enthalpy change and S is the entropy change. H is negative due to the more 

favorable hydrophobic interactions in the folded state, but so is S because the folded state is 

much more ordered and has lower entropy than the unfolded state. The balance between the 

enthalpy and entropy terms is a delicate one, and the total free-energy change is only of order 15 

kilocalories per mole. Evidently the internal hydrophobic/external hydrophilic packing 

requirement places strong constraints on the amino acid sequence, as does the requirement that 

the native state be kinetically accessible.  

 

It is helpful to think of the physics of the folding process as a “free-energy funnel Since the 

folding process is slow relative to motions at atomic scale, we can think of partially folded 

configurations as having a quasi-equilibrium value of the free energy. The free energy surface 

may be displayed as a function of some reduced dimensionality representation of the system 

configuration in a given state of the protein.12 . The most unfolded configurations are the most 

numerous, but have the highest free energy, and occur on the rim of the funnel. Going into the 

funnel represents a loss of number of configurations (decrease of entropy), but a gradual 

decrease in free energy, until the native state with very few configurations and the lowest free 

energy is reached at the bottom of the funnel. The walls of the funnel contain only relatively 

shallow subsidiary minima, which can trap the folding protein in non-native states, but only for a 

short time. Now the evolution of the system as it folds can be described in terms of the funnel. 

The system starts off in a physically probable state on the rim of the funnel, and then makes 
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transitions to a series of physically accessible states within the funnel, until the bottom of the 

funnel is gradually approached.  

 

Figure 3 illustrates folding. Here the unfolded peptide chain on the left already contains some 

folded secondary structure, alpha helices (red), and a beta hairpin (blue). It is still a long way 

from the compact native structure at right. The folding process in different proteins spans an 

enormous dynamic range from approximately 20 microseconds to approximately 1 second.  

 

 

 

 

Fig 3. 

 

The scientific knowledge derived from research on protein folding can potentially be applied to a 

variety of related life sciences problems of great scientific and commercial interest, including:  

 Protein-drug interactions (docking)  

 Enzyme catalysis (through use of hybrid quantum and classical methods) 

 Refinement of protein structures created through other methods  

 

We shall also explore the use of Blue Gene in other scientific computing areas. We expect that 

lessons learned from this project will apply to future high performance IBM systems in a broader 

range of scientific and commercial applications.   

               

Examples of those applications include the modeling of the aging and properties of materials, 

and the modeling of turbulence. This technology opens the door to a number of applications of 

great interest to civilian industry and business, like biology and other life sciences. The future of 

US high-performance computing will benefit tremendously from pursuing both of these paths in 

parallel. 
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            "One day, you're going to be able to walk into a doctor's office and have a computer 

analyze a tissue sample, identify the pathogen that ails you, and then instantly prescribe a 

treatment best suited to your specific illness and individual genetic makeup." 

 

Consider the following three types of protein science studies that might employ large-scale 

numerical simulation techniques:  

 Structure prediction  

 Folding pathway characterization  

 Folding kinetics  

Protein structure prediction can be carried out using a large number of techniques8 and, as 

previously discussed, it is unnecessary to spend a “petaflop year” on the prediction of a single 

protein structure. That said, there is some reason to believe that atomistic simulation techniques 

may be useful in refining structures obtained by other methods.  

 

Folding pathway characterization typically involves the study of thermodynamic properties of a 

protein in quasi-equilibrium during the folding process. Mapping out the free-energy “landscape” 

that the protein traverses as it samples conformations during the folding process can give insights 

into the nature of intermediate states along the folding pathway and into the “ruggedness” of the 

free-energy surface that is traversed during this process. Because such studies involve 

computations of average values of selected functions of the system's state, one has the choice of 

either averaging over time as the system samples a large number of states (molecular dynamics) 

or averaging over configurations (Monte Carlo). Aggressive sampling techniques that may 

improve the computational efficiency with which such averages can be computed can be used to 

good effect in these studies. Simulation techniques to compute these averages over the 

appropriate thermodynamic ensembles are available.  

 

Simulation studies of folding kinetics are aimed at understanding the rates at which the protein 

makes transitions between various conformations. In this case, the calculation of thermodynamic 

averages is not enough; the actual dynamics of the system must be simulated with sufficient 

accuracy to allow estimation of rates. Of course, a large number of transition events must be 

simulated in order to derive rate estimates with reasonable statistical uncertainties. Another 
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challenge faced in such simulations is that the simulation techniques used to reproduce 

thermodynamic averages in ensembles other than constant particle number, volume, and energy 

(NVE) are, strictly speaking, inappropriate for studies of folding kinetics.  

 

 

Challenges for computational modeling 

 

The current expectation is that it will be sufficient to use classical techniques, such as molecular 

dynamics (MD), to model proteins in the Blue Gene project. This is because many aspects of the 

protein folding process do not involve the making and breaking of covalent bonds. While 

disulfide bonds play a role in many protein structures, their formation will not be addressed by 

classical atomistic simulations. In classical atomistic approaches, a model for the interatomic 

interactions is used. This is known as a potential, or force field, since the forces on all the 

particles can be computed from it, if one has its mathematical expression and all its parameters. 

The MD approach is to compute all the forces on all the atoms of the computer model of the 

protein and solvent, then use that force to compute the new positions of all the atoms a very short 

time later. By doing this repeatedly, a trajectory of the atoms of the system can be traced out, 

producing atomic coordinates as a function of time. 

 

system samples a large number of states (molecular dynamics) or averaging over configurations 

(Monte Carlo). Aggressive sampling techniques that may improve the computational efficiency 

with which such averages can be computed can be used to good effect in these studies. 

Simulation techniques to compute these averages over the appropriate thermodynamic ensembles 

are available.  

 

Simulation studies of folding kinetics are aimed at understanding the rates at which the protein 

makes transitions between various conformations. In this case, the calculation of thermodynamic 

averages is not enough; the actual dynamics of the system must be simulated with sufficient 

accuracy to allow estimation of rates. Of course, a large number of transition events must be 

simulated in order to derive rate estimates with reasonable statistical uncertainties. Another 
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challenge faced in such simulations is that the simulation techniques used to reproduce 

thermodynamic averages in ensembles other than constant particle number, volume, and energy 

(NVE) are, strictly speaking, inappropriate for studies of folding kinetics.  

 

Conclusion 

 

  "Blue Gene" is an ambitious project to expand the horizons of supercomputing, with the 

ultimate goal of creating a system that can perform one quadrillion calculations per second, or 

one petaflop.  IBM is hoping that expanded performance, more efficient data access for 

processors, and lower operational costs will give Blue Gene a big leg up in the world of high-

performance computing.  

 

The Blue Gene project represents a unique opportunity to explore novel research into a number 

of areas, including machine architecture, programming models, algorithmic techniques, and 

biomolecular simulation science. Every aspect of this highly adventurous project involves 

significant challenges. Carrying out our planned program will require a collaborative effort 

across many disciplines and the involvement of the worldwide scientific and technical 

community. In particular, the scientific program will engage with the life sciences community in 

order to make best use of this unique computational resource. 
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