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Preface 
 

I have made this report file on the topic Futex; I have tried my best to elucidate all the relevant 

detail to the topic to be included in the report. While in the beginning I have tried to give a 

general view about this topic. 

 

My efforts and wholehearted co-corporation of each and everyone has ended on a successful 

note. I express my sincere gratitude to …………..who assisting me throughout the preparation of 

this topic. I thank him for providing me the reinforcement, confidence and most importantly the 

track for the topic whenever I needed it. 
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INTRODUCTION 

 

 In recent years, that is in past 5 years Linux has seen significant growth as a server 

operating system and has been successfully deployed as an enterprise for Web, file and print 

servicing.  

 

With the advent of Kernel Version 2.4, Linux has seen a tremendous boost in scalability and 

robustness which further makes it  feasible to deploy even more demanding enterprise 

applications such as high end database, business intelligence software ,application servers, etc. 

As a result, whole enterprise business suites and middleware such as SAP, Websphere, Oracle, 

etc., are now available on Linux.  

 

For these enterprise applications to run efficiently on Linux, or on any other operating 

system, the OS must provide the proper abstractions and services. Usually these enterprise 

applications and applications suites or software are increasingly built as multi process / 

multithreaded applications.  

 

These application suites are often a collection of multiple independent subsystems. 

Despite functional variations between these applications often they require to communicate 

with each other and also sometimes they need to share a common state. Examples of this are 

database systems, which typically maintain shared I/O buffers in user space. 

 

 Access to such shared state must be properly synchronized. Allowing multiple 

processes to access the same resources in a time sliced manner or potentially consecutively in 

the case of multiprocessor systems can cause many problems. This is due to the need to 

maintain  

 

data consistency, maintain true temporal dependencies and to ensure that each thread will 

properly release the resource as required when it has completed its action.  Synchronization 

can be established through locks. There are mainly two types of locks: - Exclusive locks and 

shared locks.  
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Exclusive locks are those which allows only a single user to access the protected entity, 

while shared locks are those which implements the  multiple reader – single writer semantics.  

 

Synchronization implies a shared state, indicating that a particular resource is available 

or busy, and a means to wait for its availability. The latter one can either be accomplished 

through busy-waiting or through an explicit / implicit call to the scheduler.  
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CONCURRENCY IN LINUX OS 

 

 As different processes interact with each other they may often need to access and 

modify shared section of code, memory locations and data. The section of code belonging to a 

process or thread which manipulates a variable which is also being manipulated by another 

process or thread is commonly called critical section. Proper synchronization problems 

usually serialize the access over critical section. Processes operate within their own virtual 

address space and are protected by the operating system from interference by other processes. 

By default a user process cannot communicate with another process unless it makes use of 

secure, kernel managed mechanisms. There are many times when processes will need to share 

common resources or synchronize their actions. One possibility is to use threads, which by 

definition can share memory within a process. This option is not always possible (or wise) due 

to the many disadvantages which can be experienced with threads. Methods of passing 

messages or data between processes are therefore required. In traditional UNIX systems the 

basic mechanisms for synchronization were  System V IPC (inter process communication) 

such as semaphores, msgqueues, sockets and the file locking mechanisms such as flock() and 

fcntl() functions. Message queues (msgqueues) consist of a linked list within the kernel's 

addressing space. Messages are added to the queue sequentially and may be retrieved from the 

queue in several different ways. Semaphores are counters used to control access to shared 

resources by multiple processes. They are most often used as a locking mechanism to prevent 

processes from accessing a particular resource while another  

 

process is performing operations on it. Semaphores are implemented as sets, though a set may 

have a single member. Shared memory is a mapping of an area of memory into the address 

space of more than one process. This is the fastest form of IPC as processes do not 

subsequently need access to kernel services in order to share data. fcntl() locking implements 

locking directly via the kernel. This should work without problems on a local machine, but via 

NFS this requires locking support in the NFS server. The (old) user space nfsd does not 

support locking, while the kernel nfs server (knfsd), which comes with Linux 2.2 (and newer) 

supports locking. fcntl() locking will fail, if your NFS server doesn't support locking, so 
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choosing the optimal locking technique does not only depend on the client machine but also on 

the NFS server machine. 

 

 While checking out for semaphores, the Famous Physicist and Computer Scientist 

Edsger Wybe Dijkstra had proposed the concept of semaphores. Semaphores supports two 

basic operations UP and DOWN. The initial value of semaphore is taken 1.The codes that are 

given by Dijkstra on semaphores are as follows :- 

UP()      

{ 

 Semaphore++;   

} 

 

DOWN() 

{ 

while(Semaphore==0); 

Semaphore=0; 

} 

 Actual Linux implementation of the semaphores in the kernel involves UP and DOWN 

to be coded as system calls. The UP system call, after incrementing the value of semaphore 

sends a wakeup signal to all the processes which are waiting for the same semaphore value to 

be 1 so as they can acquire it. (Wake up implies that the process which does UP of semaphore 

also change the task_structure’s field ‘status’ to TASK_RUNNING). DOWN has a similar 

behavior proposed by Dijkstra. It simply sees whether the semaphore value is 1 else it sleeps 

within the while() loop. Mr. NUTT has provided the pseudo code as 

 

DOWN (s) : [while (s==0) {wait}; s=s-1; ] 

 

 The code within square braces is indivisible and one in curly braces can be interrupted. 

Now to understand how these functions really achieve concurrency we choose an example 

where two processes A and B try to access the critical section. As the initial value of 

semaphore is one, when the two processes calls DOWN() concurrently, only one process will 
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succeed in attaining the DOWN() operation. Say, suppose process A started executing 

DOWN() operation first. At this point, process B can’t  

 

 

preempt A because DOWN() is a system call. Now process A sees that the value of semaphore 

is one and automatically decrements its value to zero and comes out of DOWN() without 

blocking. Now process B can preempt A because now A is off the system call. Now B starts 

executing DOWN() and checks the value of the semaphore which is zero at this moment and 

hence it goes to sleep and doesn’t come out of the system call. When process A has completed, 

it generates a wakeup call and thus B starts executing. That was the whole story of Linux 

semaphores (These IPC mechanisms are coded as C routines given in /usr/src/linux/ipc. It is 

coded by an Indian – Mr. Krishna Balasubramaniam.) 

 

 Thus we see these mechanisms expose an opaque handle to a kernel object that naturally 

provides the shared state and atomic operations in the kernel. Services must be requested 

through system calls (eg :- semop()). The drawback of this approach is that every lock access 

requires a system call. When locks have low contention rates, the system call can constitute a 

significant overhead. A process may operate in one of two modes which are known as 'user' 

mode and 'system' mode (or kernel mode). A single process may switch between the two 

modes, i.e. they may be different phases of the same process. Processes defaulting to user 

mode include most application processes, these are executed within an isolated environment 

provided by the operating system such that multiple processes running on the same machine 

cannot interfere with each other's resources. A user processs switches to kernel mode when it 

makes a system call, generates an exception (fault) or when an interrupt occurs (e.g. system 

clock). At this point the kernel is executing on behalf  

 

of the process. At any one time during its execution a process runs in the context of itself and 

the kernel runs in the context of the currently running process.   

 

One solution to this problem is to deploy user level locking, which avoids some of the 

overhead associated with purely kernel-based locking mechanisms. It relies on a user level 
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lock located in a shared memory region and modified through atomic operations to indicate the 

lock status. Only the contended case requires kernel intervention. The exact behavior and the 

obtainable performance are directly affected by how and when the kernel services are invoked. 
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 In this seminar, I am describing a particular fast user level locking mechanism called 
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distribution version 2.5.7 
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PROBLEMS AND REQUIREMENTS IN IMPLEMENTATION 

 

 There are various behavioral requirements that need to be considered. Most center 

around the fairness of the locking scheme and the lock release policy. In a fair locking scheme 

the lock is granted in the order it was requested, i.e., it is handed over to the longest waiting 

task. This can have negative impact on throughput due to the increased number of context 

switches. At the same time it can lead to the so called convoy problem. Since, the locks are 

granted in the order of request arrival, they all proceed at the speed of the slowest process, 

slowing down all waiting processes. A common solution to the convoy problem has been to 

mark the lock available upon release, wake all waiting processes and have them recontend for 

the lock. This is referred to as random fairness, although higher priority tasks will usually 

have an advantage over lower priority ones. However, this also leads to the well known 

thundering herd problem. Despite this, it can work quite well on uni-processor systems if the 

first task to wake releases the lock before being preempted or scheduled, allowing the second 

herd member to obtain the lock, etc. It works less spectacularly on Symmetric Multi 

Processing Systems (SMP). To avoid this problem, one should only wake up one waiting task 

upon lock release. Marking the lock available as part of releasing it, gives the releasing task 

the opportunity to reacquire the lock immediately again, if so desired, and avoid unnecessary 

context switches and the convoy problem. Some refer to these as greedy, as the running task 

has the highest probability of reacquiring the lock if the lock  

 

is hot. However, this can lead to starvation. Hence, the basic mechanisms must enable both 

fair locking, random locking and greedy or convoy avoidance locking (short ca-locking). 

 

 

 

                                                   Random  fairness 

 

 

                            Wake up 1 process 

 

Thundering 

herd 

problem 

Fair 

locking 

scheme 

Greedy 

locking 

Convoy 

problem 



www.studymafia.org 
 

 

Another requirement is to enable spin locking, i.e., have an application spin for the 

availablilty of the lock for some user specified time (or until granted) before giving up and 

resolving to block in the kernel for its availability. Spin-locks are useful for short-critical 

sections. If you cannot avoid having a long critical section, you should not use spin-lock 

primitives in the first place, but use blocking synchronization primitives. Hence an application 

has the choice to either  

 

A. Block waiting to be notified for the lock to be released, or  

B. Yield the processor until the thread is rescheduled and then the lock is tried to be acquired 

again, or   

C. Spin consuming CPU cycles until the lock is released.  

 

 

Thus with respect to performance, there are basically two overriding goals: 

 Avoid system calls if possible, as system calls typically consume several hundred 

instructions. 

 Avoid unnecessary context switches: context switches lead to overhead associated 

with TLB invalidations. Each time a process is removed from access to the processor, 

sufficient information on its current operating state must be stored such that when it is 

again scheduled to run on the processor it can resume its operation from an identical 

position. This operational state data is known as its context and the act of removing 

the process's thread of execution from the processor (and replacing it with another) is 

known as a process switch or context switch.  

 

A typical process switch or context switch involves the following: 
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Another requirement is that fast user level locking should be simple enough to provide 

the basic foundation to efficiently enable more complicated synchronization constructs, e.g. 

semaphores, rwlocks, blocking locks, or spin versions of these, pthread mutexes, DB latches.. 

 

It should also allow for a clean separation of the blocking requirements towards the 

kernel, so that the blocking only has to be implemented with a small set of different constructs. 

This allows for extending the use of the basic primitives without kernel modifications. Of 

interest is the implementation of mutex, semaphores and multiple reader/single writer locks.  

 

Finally, a solution needs to be found that enables the recovery of “dead” locks. 

Deadlock is a permanent blocking of a set of processes that either compute for system 

resources or communicate with each other. Deadlock may be addressed by mutual exclusion or 

by deadlock avoidance. Mutual exclusion prevents two threads accessing the same resource 

simultaneously. Deadlock avoidance can include initiation denial or allocation denial, both of 

which serve to eliminate the state required for deadlock before it arises. We define 

unrecoverable locks as those that have been acquired by a process and the process terminates 

without releasing the lock. There are no convenient means for the kernel or for the other 
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processes to determine which locks are currently held by a particular process, as lock 

acquisition can be achieved through user memory manipulation. Each process has some form 

of associated Process Identifier, (PID) through which it may be manipulated. The process also 

carries the User Identifier (UID) of the person who initiated  

 

the process and will also have group identifier (GID). Registering the process’s “pid” after 

lock acquisition is not enough as both operations are not atomic. If the process dies before it 

can register its pid or if it cleared its pid and before being able the release the lock, the lock is 

unrecoverable. 
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LINUX FAST USER LEVEL LOCKING: 

HISTORY AND IMPLEMENTATION 

 

Having stated the requirements in the previous section, we now proceed to describe the 

basic general implementation issues. As told before, futex is a fast user level locking 

mechanism and hence it is called as Fast Userspace muTEX. Futexes are very basic and lend 

themselves well for building higher level locking abstractions such as POSIX mutexes. Most 

programmers will in fact not be using futexes directly but instead rely on system libraries built 

on them, such as the NPTL pthreads implementation. A futex is identified by a piece of 

memory which can be shared between different processes. In fast userlevel locking, there are 

mainly two cases upon which it has been implemented. They are: The uncontended case and 

the contended case.  

 

The uncontended case should be efficient and should avoid system calls by all means. 

In the contended case we are willing to perform a system call to block in the kernel. Avoiding 

system calls in the uncontended case requires a shared state in user space accessible to all 

participating processes/task. This shared state, referred to as the user lock, indicates the status 

of the lock, i.e., whether the lock is held or not and whether there are waiting tasks or not. This 

is in contrast to the System V IPC mechanisms which merely exports a handle to the user, and 

performs all operations in the kernel. The user lock is located in a shared memory region that 

was create via shmat() or  mmap(). 

 

 

As a result, it can be located at different virtual addresses in different address spaces. 

In the uncontended case, the application atomically changes the lock status word without 

entering into the kernel. Hence, atomic operations such as atomic_inc(), atomic_dec(), 

cmpxchg(), and test_and_set() are neccessary in user space. 

 

In the contended case, the application needs to wait for the release of the lock or needs 

to wake up a waiting task in the case of an unlock operation. In order to wait in the kernel, a 
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kernel object is required, that has waiting queues associated with it. The waiting queues 

provide the queueing and scheduling interactions. Of course, the aforementioned IPC 

mechanisms can be used for this purpose. However, these objects still imply a heavy weight 

object that requires a priori allocation and often does not precisely provide the required 

functionality. Another alternative that is commonly deployed are spinlocks where the task 

spins on the availability of the user lock until granted. To avoid too many cpu cycles being 

wasted, the task yields the processor occasionally. 

 

It is desirable to have the user lock be handlefree. In other words instead of handling an 

oqaque kernel handle, requiring initialization and cross process global handles, it is desirable 

to address locks directly through their virtual address. As a consequence, kernel objects can be 

allocated dynamically and on demand, rather than apriori. A lock, though addressed by a 

virtual address, can be identified conceptually through its global lock identity, which we 

define by the memory object backing the virtual address and the offset within that object. It is 

given by the tuple [B,O]. Since B represents the memory object backing the kernel object,it 

can be any of the three fundamental types. They are:  

 

(a) Anonymous memory,  

(b) Shared memory segment, and  

(c) Memory mapped files.  

 

While (b) and (c) can be used between multiple processes, (a) can only be used 

between threads of the same process. Utilizing the virtual address of the lock as the kernel 

handle also provides for an integrated access mechanism that ties the virtual address 

automatically with its kernel object. Despite the atomic manipulation of the user level lock 

word, race conditions can still exist as the sequence of lock word manipulation and system 

calls is not atomic. This has to be resolved properly within the kernel to avoid deadlock and 

improper functioning.  

Next the user lock object in futexes are described. For the purpose of this discussion a 

general opaque datatype ulock_t is defined to represent the userlevel lock. At a minimum it 

requires a status word :- 
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typedef struct ulock_t { 

long status; 

} ulock_t; 

  Here, it has got a “long” field which indicates the status of the user lock object. 

We assume that a shared memory region has been allocated either through shmat() or through 

mmap() and that any user locks are allocated into this region. Again, the addresses of the same 

lock need not be the same across all participating address spaces.  

 

 The basic semaphore functions UP() and DOWN() can be implemented as follows. 

static inline int 

usema_down(ulock_t *ulock) 

{ 

if (!__ulock_down(ulock)) 

return 0; 

return sys_ulock_wait(ulock); 

} 

static inline int 

usema_up(ulock_t *ulock) 

{ 

if (!__ulock_up(ulock)) 

return 0; 

return sys_ulock_wakeup(ulock); 

} 

 The ulock_down() and ulock_up() provide the atomic increment and decrement 

operations on the lock status word. A non positive count (status) indicates that the lock is not 

available. In addition, a negative count could indicate the number of waiting tasks in the 

kernel. If a contention is detected, i.e.  
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(ulock->status <=0), the kernel is invoked through the sys_* functions to either wait on the 

wait queue associated with ulock or release a blocking task from said waitqueue. All counting 

is performed on the lock word and race conditions resulting from the non atomicity of the lock 

word must be resolved in the kernel. Due to such race conditions, a lock can receive a wakeup 

before the waiting process had a chance to enqueue itself into the kernel wait queue. We 

describe below how various implementation resolved this race condition as part of the kernel 

service.  

 

PREVIOUS IMPLEMENTATIONS 

 

One early design suggested was the explicit allocation of a kernel object and the export 

of the kernel object address as the handle. The kernel object was comprised of a wait queue 

and a unique security signature. On every wait or wakeup call, the signature would be verified 

to ensure that the handle passed indeed was referring to a valid kernel object. The 

disadvantages of this approach have been mentioned in section 2, namely that a handle needs 

to be stored in ulock_t and that explicit allocation and deallocation of the kernel object are 

required. Furthermore, security is limited to the length of the key and hypothetically could be 

guessed.  

 

Another prototype implementation, known as ulocks, implements general user 

semaphores with both fair and convoy avoidance wakeup policy. Mutual exclusive locks are 

regarded as a subset of the user semaphores. The prototype also provides multiple 

reader/single writer locks (rwlocks). The user lock object ulock_t consists of a lock word and 

an integer indicating the required number of kernel wait queues.  

 

User semaphores and exclusive locks are implemented with one kernel wait queue and 

multiple reader/single writer locks are implemented with two kernel wait queues. This 

implementation separates the lock word from the kernel wait queues and other kernel objects, 

i.e., the lock word is never accessed from the kernel on the time critical wait and wakeup code 

path. Hence the state of the lock and the number of waiting tasks in the kernel is all recorded 
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in the lock word. For exclusive locks, standard counting as described in the general ulock_t 

discussion, is implemented. As with general semaphores, a positive number indicates the 

number of times the semaphore can be acquired, “0” and less indicates that the lock is busy, 

while the absolute of a negative number indicates the number of waiting tasks in the kernel. 

 

 The “premature” wakeup call is handled by implementing the kernel internal waitqueues 

using kernel semaphores (struct semaphore) which are initialized with a value 0. A premature 

wakeup call, i.e. no pending waiter yet, simply increases the kernel semaphore’s count to 1. 

Once the pending wait arrives it simply decrements the count back to 0 and exits the system 

call without waiting in the kernel. All the wait queues (kernel semaphores) associated with a 

user lock are encapsulated in a single kernel object. In the rwlocks case, the lock word is split 

into three fields: write locked (1 bit), writes waiting (15 bits), readers (16 bits). If write locked, 

the readers indicate the number of tasks waiting to read the lock, if not write locked, it 

indicates the numbers of tasks that have acquired read access to the lock. Writers are blocking 

on a first kernel wait queue, while readers are blocking on a  

 

second kernel wait queue associated with a ulock. To wakeup multiple pending read requests, 

the number of task to be woken up is passed through the system call interface. To implement 

rwlocks and ca-locks, atomic compare and exchange support is required. Unfortunately on 

older 386 platforms that is not the case.    

 

 The kernel routines must identify the kernel object that is associated with the user lock. 

Since the lock can be placed at different virtual addresses in different processes, a lookup has 

to be performed. In the common fast lookup, the virtual address of the user lock and the 

address space are hashed to a kernel object. If no hash entry exists, the proper global identity 

[B;O] of the lock must be established. For this we first scan the calling process’s vma list for 

the vma containing the lock word and its offset. The global identity is then looked up in a 

second hash table that links global identities with their associated kernel object. If no kernel 

object exists for this global identity, one is allocated, initialized and added to the hash 

functions. The close() function associated with a shared region holding kernel objects is 

intercepted, so that kernel objects are deleted and the hash tables are cleaned up, once all 
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attached processes have detached from the shared region. While this implementation provides 

for all the requirements, the kernel infrastructure of multiple hash tables and lookups was 

deemed too heavy. In addition, the requirement for compare and exchange is also seen to be 

restrictive. 

 

 

FUTEXES 

 

 The  Linux  kernel  provides  futexes  ('Fast  Userspace muTexes') as a building block 

for fast userspace locking and semaphores. Futexes  were  designed and worked on by 

Hubertus Franke IBM Thomas J. Watson Research Center, Matthew Kirkwood, Ingo Molnar  

(Red  Hat)  and Rusty  Russell (IBM Linux Technology Center). Futexes are very  basic  and 

lend themselves well for building higher level locking abstractions such as POSIX mutexes. 

Initial futex support was merged in Linux 2.5.7 but with different semantics  from those 

described below. Current semantics are available from Linux 2.5.40 onwards. A futex is 

identified by a piece of memory which can be shared  between different  processes.  In these 

different processes, it need not have identical addresses. In its bare form, a futex has 

semaphore semantics; it  is  a  counter  that can be incremented and decremented atomically; 

processes can wait for the value to become positive. Futex operation is entirely userspace for 

the non-contended  case.  The kernel  is  only  involved to arbitrate the contended case. As any 

sane design will strive for non-contension, futexes are also  optimised  for this situation. In  its  

bare form, a futex is an aligned integer which is only touched by atomic assembler 

instructions. Processes can share this integer over mmap(),  via shared segments or because 

they share memory space, in which case the application is commonly called multithreaded. 

There are three key points of the original futex implementation which was added to the 2.5.7 

kernel: 

 

 

1. We use a unique identifier for each futex (which can be shared across different 

address spaces, so may have different virtual addresses in each): this identifier is 
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the “struct page” pointer and the offset within that page. We increment the 

reference count on the page so it cannot be swapped out while the process is 

sleeping. 

2. The structure indicating which futex the process is sleeping on is placed in a 

hash table, and is created upon entry to the futex syscalls on the process’s kernel 

stack. 

3. The compression of “Fast Userspace muTEX” into “futex” gave a simple unique 

identifier to the section of code and the function names used.  

 

THE 2.5.7 IMPLEMENTATION 

 

 The initial implementation which was judged a sufficient basis for kernel inclusion used 

a single two-argument system call, “sys_futex(struct futex *, int op)”. The first argument was 

the address of the futex, and the second was the operation, used to further demultiplex the 

system call and insulate the implementation somewhat from the problems of system call 

number allocation. The latter is especially important as the system call is expand as new 

operations are required. The sys_futex system call provides a method for a program to wait for 

a value  at  a  given  address  to change, and a method to wake up anyone waiting on a 

particular address while the addresses for the same  memory in separate processes may not be 

equal, the kernel maps  

 

them internally so the same memory mapped in different locations will  correspond for  

sys_futex calls. The two valid op numbers for this implementation were FUTEX_UP and 

FUTEX_DOWN. The algorithm was simple, the file linux/kernel/futex.c containing 140 code 

lines, and 233 in total. The algorithm implemented is as given below: 

 

1. The user address was checked for alignment and that it did not overlap a page 

boundary. 
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2. The page is pinned: this involves looking up the address in the process’s address 

space to find the appropriate “struct page *”, and incrementing its reference count 

so it cannot be swapped out. 

3. The “struct page *” and offset within the page are added, and that result hashed 

using the recently introduced fast multiplicative hashing routines to give a hash 

bucket in the futex hash table. 

4. The “op” argument is then examined. If it is FUTEX_DOWN then: 

(a) The process is marked INTERRUPTIBLE, meaning it is ready to sleep. 

(b) A “struct futex_q” is chained to the tail of the hash bucket determined in 

step 3: the tail is chosen to give FIFO ordering for wakeups. This structures 

contains a pointer to the process and the “struct page *” and offset which 

identify the futex uniquely. 

(d) The page is mapped into low memory (if it is a high memory page), and an 

atomic decrement of the futex address is attempted,4 then unmapped again. 

If this does not decrement the counter to zero, we check for signals (setting 

the error to EINTR and going to the next step), schedule, and then repeat 

this step. 

(e) Otherwise, we now have the futex, or have received a signal, so we mark 

this process RUNNING, unlink ourselves from the hash table, and wake the 

next waiter if there is one, and return 0 or -EINTR. We have to wake 

another process so that it decrements the futex to -1 to indicate that it is 

waiting (in the case where we have the futex), or to avoid the race where a 

signal came in just as we were woken up to get the futex (in the case where 

a signal was received). 

5. If the op argument was FUTEX_UP: 

(a) Map the page into low memory if it is in a high memory page 

(b) Set the count of the futex to one (“available”). 

(c) Unmap the page if it was mapped from high memory  

(d) Search the hash table for the first “struct futex_q” associated with this futex, and 

wake up that process. 

6. Otherwise, if the op argument is anything else, set the error to EINVAL. 



www.studymafia.org 
 

7. Unpin the page. 

While there are several subtleties in this implementation, it gives a second major 

advantage over System V semaphores: there are no explicit limits on how many futexes you 

can create, nor can one futex user  

 

“starve” other users of futexes. This is because the futex is merely a memory location like any 

other until the sys_futex syscall is entered, and each process can only do one sys_futex syscall 

at a time, so we are limited to pinning one page per process into memory, at worst. 

 

READ-WRITE LOCKS 

 

 We considered an implementation of “FUTEX_ READ_DOWN” et. al, which would be 

similar to the simple mutual exclusion locks, but before adding these to the kernel, Paul 

Mackerras suggested a design for creating read/write lock in userspace by using two futexes 

and a count: f ast userspace read/write locks, or furwocks. This implementation provides the 

benchmark for any kernel-based implementation to beat to justify its inclusion as a first-class 

primitive, which can be done by adding new valid “op” values.  

 

PROBLEMS WITH THE 2.5.7 IMPLEMENTATION 

 

 Once the first implementation entered the mainstream experimental kernel, it drew the 

attention of a much wider audience. In particular those concerned with implementing POSIX 

threads, and attention also returned to the fairness issue. 

 There is no straightforward way to implement the pthread_cond_timedwait primitive: 

this operation requires a timeout, but using a timer is difficult as these must not 

interfere with their use by any other code. 

 The pthread_cond_broadcast primitive requires every process sleeping to be woken up, 

which does not fit well with the 2.5.7 implementation, where a process only exits the 

kernel when the futex has been successfully obtained or a signal is received. 
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 For N:M threading, such as the Next Generation Posix Threads project [5] an 

asynchronous interface for finding out about the futex is required, since a single 

process (containing multiple threads) might be interested in more than one futex. 

 Starvation occurs in the following situation: a single process which immediately drops 

and then immediately competes for the lock will regain it before any woken process 

will. 

 

MODIFICATIONS OF THE 2.5.7 IMPLEMENTATION 

 

 With these limitations brought to light, we searched for another design which would be 

flexible enough to cater for these diverse needs. After various implemenation attempts and 

discussions we settled on a variation of atomic_compare_and_swap primitive, with the 

atomicity guaranteed by passing the expected value into the kernel for checking. With these 

modifications, futex has been implemented in the Linux kernel version 2.6. 

 

To do this, two new “op” values namely, FUTEX_WAIT and FUTEX_WAKE replaced 

the operations above, and the system call was changed to two additional arguments, “int val” 

and “struct timespec *reltime”. 

 

 

FUTEX_WAIT: This operation atomically verifies that the futex address  still contains the 

value given, and sleeps awaiting FUTEX_WAKE on this futex address.  If the timeout 

argument is  non-NULL, its contents  describe the maximum duration of the wait, which is 

infinite otherwise. It is similar to the previous FUTEX_ DOWN, except that the looping and 

manipulation of the counter is left to userspace. This works as follows: 

 

1. Set the process state to INTERRUPTIBLE, and place “struct futex_q” into the hash 

table as before. 

2. Map the page into low memory (if in high memory). 

3. Read the futex value. 

4. Unmap the page (if mapped at step 2). 
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5. If the value read at step 3 is not equal to the “val” argument provided to the system 

call, set the return to EWOULDBLOCK. 

6. Otherwise, sleep for the time indicated by the “reltime” argument, or indefinitely if 

that is NULL. 

(a) If we timed out, set the return value to ETIMEDOUT. 

(b) Otherwise, if there is a signal pending, set the return value to EINTR. 

7.  Try to remove our “struct futex_q” from the hash table: if we were already 

removed, return 0 (success) unconditionally, as this means we were woken up, 

otherwise return the error code specified above. 

 

FUTEX_WAKE: This is similar to the previous FUTEX_UP, except that it does not alter the 

futex value, it simple wakes one (or more) processes. The number of processes to wake is 

controlled by the “int val” parameter, and the return value for the system call is the number of 

processes actually woken and removed from the hash table. It returns the number of processes 

woken up. 

 

FUTEX_AWAIT: This is proposed as an asynchronous operation to notify the process via a 

SIGIO-style mechanism when the value changes. The exact method has not yet been settled 

(see future work in Section 5). This new primitive is only slightly slower than the previous 

one,6 in that the time between waking the process and that process attempting to claim the 

lock has increased (as the lock claim is done in userspace on return from the FUTEX_WAKE 

syscall), and if the process has to attempt the lock multiple times before success, each attempt 

will be accompanied by a syscall, rather than the syscall claiming the lock itself. On the other 

hand, the following can be implemented entirely in the userspace library: 

1. All the POSIX style locks, including pthread_cond_broadcast (which requires the 

“wake all” operation) and pthread_cond_timedwait (which requires the timeout 

argument). One of the authors (Rusty) has implemented a “nonpthreads” demonstration 

library which does exactly this. 

2. Read-write locks in a single word, on architectures which support cmpxchg-style 

primitives. 

3. FIFO wakeup, where fairness is guaranteed to anyone waiting. Finally, it is worthwhile 

pointing out that the kernel implementation requires exactly the same number of lines as 

the previous implementation. 
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FUTEX_FD: It is used to support asynchronous wakeups. This operation associates a file 

descriptor with a futex.  If  another  process  executes  a FUTEX_WAKE,  the process will 

receive the signal number that was passed in val. The calling process must close the returned  

file descriptor after use. To  prevent race conditions, the caller should test if the futex has been 

upped after FUTEX_FD returns. It returns the new file descriptor associated with the futex. 

 

  



www.studymafia.org 
 

FUTURE DIRECTIONS 

 

 A lot of time is being wasted between a process releasing the lock and another process 

acquiring the lock. Inorder to avoid that, an asynchronous wait extension will be added 

to consume less time.  

 

 Currently, in the uncontended case, only the system calls are avoided. It would be 

much more good if the kernel interactions are also removed. For this purpose, they  are 

working with the NGPT team to build Global POSIX mutexes over futex. NGPT 

supports a M : N threading model, i.e., M user level threads are executed over N tasks. 

Conceptually, the N tasks provide virtual processors on which the M user threads are 

executing. When a user level thread, executing on one of these N tasks, needs to block 

on a futex, it should not block the task, as this task provides the virtual processing. 

Instead only the user thread should be descheduled by the thread manager of the NGPT 

system.  

 

 Nevertheless, a waitobj must be attached to the waitqueue in the kernel, indicating that a 

user thread is waiting on a particular futex and that the task group needs a notification with 

respect to the continuation on that futex. Once the thread manager receives the notification it 

can reschedule the previously blocked user thread. For this we provide an additional operator 

AFUTEX_WAIT to the sys_futex system call. Its task is to append a waitobj to the futex’s kernel 

waitqueue and continue. This waitobj cannot be allocated on the stack and must be allocated 

and de-allocated dynamically. Dynamic allocations have the disadvantage that the waitobjs 

must be freed even during an irregular program exit. It further poses a denial of service attack 

threat in that a malicious applications can continuously call sys_futex (AFUTEX_WAIT).   

The general solutions seem to convert to the usage of a /dev/futex device to control 

resource consumption. The first solution is to allocate a file descriptor fd from the /dev/futex 

“device” for each outstanding asynchronous waitobj. Conveniently these descriptors should be 

“pooled” to avoid the constant opening and closing of the device. The private data of the file 

would simply be the waitobj. Upon completion a SIGIO is sent to the application. The 
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advantage of this approach is that the denial of service attack is naturally limited to the file 

limits imposed on a process. Furthermore, on program death, all waitobjs still enqueued can be 

easily dequeued. The disadvantage is that this approach can significantly pollute the “fd’ 

space. Another solution pro-posed has been to open only one fd, but allow multiple waitobj 

allocations for this fd. This approach removes the fd space pollution issue but requires an 

additional tuning parameter for how many outstanding waitobjs should be allowed per fd. It 

also requires proper resource management of the waitobjs in the kernel. At this point no 

definite decisions has been reached on which direction to proceed. The question of priorities in 

futexes has been raised: the current implementation is strictly FIFO order. The use of nice 

level is almost certainly too restrictive, so some other priority method would be required. 

Expanding the sys-tem call to add a priority argument is possible if there were demonstrated 

application advantage. 
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CONCLUSION 

 

 In this paper I’ve described a fast userlevel locking mechanism, called futexes, that were 

integrated into the Linux 2.5 development kernel and also in the kernel version 2.6 of Linux.  

 

Also the various requirements for such a package,previous various solutions and the current 

futex package were outlined. In the performance futexes can provide significant performance 

advantages over standard System V IPC semaphores in all case studies. 
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