
www.studymafia.org

A

Seminar report

on

CORBA
Submitted in partial fulfillment of the requirement for the award of degree

of Bachelor of Technology in Computer Science

SUBMITTED TO: SUBMITTED BY:

www.studymafia.org www.studymafia.org

www.studymafia.org

Preface

I have made this report file on the topic CORBA, I have tried my best to elucidate all the

relevant detail to the topic to be included in the report. While in the beginning I have tried

to give a general view about this topic.

My efforts and wholehearted co-corporation of each and everyone has ended on a

successful note. I express my sincere gratitude to …………..who assisting me throughout

the prepration of this topic. I thank him for providing me the reinforcement, confidence

and most importantly the track for the topic whenever I needed it.

www.studymafia.org

What is CORBA?

CORBA (Common Object Request Broker Architecture) is a distributed Object-oriented

client/server platform.

It includes:

• An object-oriented Remote Procedure Call (RPC) mechanism

• object services (such as the Naming or Trading Service)

• Language mappings for different programming languages

• Interoperability protocols

• Programming guidelines and patterns

CORBA replaces ad-hoc special-purpose mechanisms (such as socket Communication)

with an open, standardized, scalable, and portable Platform.

www.studymafia.org

The Object Management Group (OMG)

The OMG was formed in 1989 to create specifications for open Distributed computing.

Its mission is to "... Establish industry guidelines and object management Specifications

to provide a common framework for distributed Application development."

The OMG is the world’s largest software consortium with more than 800 member

organizations.

Specifications published by the OMG are free of charge. Vendors of CORBA

technologies do not pay a royalty to the OMG.

Specifications are developed by consensus of interested submitters.

www.studymafia.org

CORBA History

 OMG (Object Management Group)

 Established in 1989 with 8 members

 Whose charter is to “provide a common architectural framework for object-

oriented applications based on widely available interface specifications?”

 Object Management Architecture is a set of standards deliver the common

architectural framework on which applications are built.

 CORBA’s role in OMA is to implement the ORB functions.

CORBA 1.0

 Was introduced and adopted in December 1990.

 It was followed in early 1991 by CORBA 1.1, which defined the Interface

Definition Language (IDL) as well as API for applications to communicate with

an ORB.

CORBA 2.0 and IIOP

 CORBA 1.x was an important first step is providing distributed object

interoperability, but wasn’t a complete specification.

 Although it provided standards for IDL and for accessing an ORB through an

application, its chief limitation was that it did not specify a standard protocol

through which ORBs could communicate with each other.

 As a result, a CORBA ORB from one vendor could not communicate with an

ORB from another vendor, a restriction that severely limited interoperability

among distributed objects.

 CORBA 2.0 is adopted in December 1994.

 The primary accomplishment was to define a standard protocol by which ORB

from various CORBA vendors could communicate.

 This protocol, known as the IIOP is required to be implemented by all vendors

who want to call their products CORBA 2.0 compliant.

 IIOP ensures true interoperability among products from numerous vendors, thus

enabling CORBA applications to be more vendor-independent.

www.studymafia.org

OMG Common Object Request Broker Architecture (CORBA)

The Object Management Group's (OMG's) Common Object Request Broker Architecture

(CORBA
®
) middleware standard enables software applications to invoke operations on

distributed objects without concern for object location, programming language, operating

system platform, communication protocols, interconnections or hardware.

CORBA remains the most successful open standard in supporting distributed

heterogeneous mission critical systems that require exceptional levels of performance and

QoS. PrismTech's Open Fusion provides the most comprehensive range of CORBA

middleware products available from any vendor.

CORBA uses an interface definition language (IDL) to specify the interfaces that objects

will present to the outside world. CORBA then specifies a “mapping” from IDL to a

specific implementation language such as C++ or Java. Standard mappings exist for Ada,

C, C++, Lisp, Smalltalk, Java, COBOL, PL/I and Python. There are also non-standard

mappings for Perl, Visual Basic, Ruby, Erlang, Tcl and even VHDL implemented by

object request brokers (ORBs) written for those languages.

A language mapping requires the developer to create some IDL code that represents the

interfaces to his objects. Typically, a CORBA implementation comes with a tool called

an IDL compiler which converts the developer's IDL code into some language-specific

generated code. A traditional compiler then compiles the generated code to create the

linkable-object files for the application. the figure below illustrates how the generated

code is used within the CORBA infrastructure.

The CORBA specification dictates that there shall be an object request broker (ORB)

through which the application interacts with other objects. In practice, the application

simply initializes the ORB, and accesses an internal Object Adapter which maintains

such issues as reference counting, object (& reference) instantiation policies, object

lifetime policies, etc.

The Object Adapter is used to register instances of the generated code classes. Generated

Code Classes are the result of compiling the user IDL code which translates the high-

level interface definition into an OS- and language-specific class base for use by the user

application. This step is necessary in order to enforce the CORBA semantics and provide

a clean user processes for interfacing with the CORBA infrastructure.

http://www.prismtech.com/openfusion/products

www.studymafia.org

The key components of a CORBA ORB are as follows:

 Object - This is a CORBA programming entity that consists of an identity, an

interface, and an implementation, which is known as a Servant.

 Servant - This is an implementation programming language entity that defines the

operations that support a CORBA IDL interface. Servants can be written in a

variety of languages, including C, C++, Java, Smalltalk, and Ada.

 Client - This is the program entity that invokes an operation on an object

implementation. Accessing the services of a remote object should be transparent

to the caller. Ideally, it should be as simple as calling a method on an object, i.e.,

obj->op(args). The remaining components in Figure 1 help to support this level of

transparency.

 Object Request Broker (ORB) - The ORB provides a mechanism for transparently

communicating client requests to target object implementations. The ORB

simplifies distributed programming by decoupling the client from the details of

the method invocations. This makes client requests appear to be local procedure

calls. When a client invokes an operation, the ORB is responsible for finding the

object implementation, transparently activating it if necessary, delivering the

request to the object, and returning any response to the caller.

 ORB Interface - An ORB is a logical entity that may be implemented in various

ways (such as one or more processes or a set of libraries). To decouple

applications from implementation details, the CORBA specification defines an

abstract interface for an ORB. This interface provides various helper functions

such as converting object references to strings and vice versa, and creating

argument lists for requests made through the dynamic invocation interface

described below.

 CORBA IDL stubs and skeletons - CORBA IDL stubs and skeletons serve as the

"glue" between the client and server applications, respectively, and the ORB. The

www.studymafia.org

transformation between CORBA IDL definitions and the target programming

language is automated by a CORBA IDL compiler. The use of a compiler reduces

the potential for inconsistencies between client stubs and server skeletons and

increases opportunities for automated compiler optimizations.

 Dynamic Invocation Interface (DII) - This interface allows a client to directly

access the underlying request mechanisms provided by an ORB. Applications use

the DII to dynamically issue requests to objects without requiring IDL interface-

specific stubs to be linked in. Unlike IDL stubs (which only allow RPC-style

requests), the DII also allows clients to make non-blocking deferred synchronous

(separate send and receive operations) and oneway (send-only) calls.

 Dynamic Skeleton Interface (DSI) - This is the server side's analogue to the client

side's DII. The DSI allows an ORB to deliver requests to an object

implementation that does not have compile-time knowledge of the type of the

object it is implementing. The client making the request has no idea whether the

implementation is using the type-specific IDL skeletons or is using the dynamic

skeletons.

 Object Adapter - This assists the ORB with delivering requests to the object and

with activating the object. More importantly, an object adapter associates object

implementations with the ORB. Object adapters can be specialized to provide

support for certain object implementation styles (such as OODB object adapters

for persistence and library object adapters for non-remote objects).

www.studymafia.org

 A First CORBA Application

This section introduces the JServer CORBA application development process. It tells you

how to write a simple but useful program that runs on a client system, connects to Oracle

using IIOP, and invokes a method on a CORBA server object that is activated and runs

inside an Oracle8i Java VM.

This section addresses only the purely mechanical aspects of the development process.

Application developers know that for large-scale applications the design is a crucially

important step. See "For More Information" for references to documents on CORBA

design.

The CORBA application development process has seven phases:

1. Design and write the object interfaces.

2. Generate stubs and skeletons, and other required support classes.

3. Write the server object implementations.

4. Use the client-side Java compiler to compile both the Java code that you have

written, and the Java classes that were generated by the IDL compiler. Generate a

JAR file to contain the classes and any other resource files that are needed.

5. Publish a name for the directly-accessible objects with the CosNaming service, so

you can access them from the client program.

6. Write the client side of the application. This is the code that will run outside of the

Oracle8i data server, on a workstation or PC.

7. Compile the client code using the JDK Java compiler.

8. Load the compiled classes into the Oracle8i database, using the loadjava tool

and specifying the JAR file as its argument. Make sure to include all generated

classes, such as stubs and skeletons. (Stubs are required in the server when the

server object acts as a client to another CORBA object.)

www.studymafia.org

Some advantages:

 CORBA supports many existing languages (alone/mixed).

 CORBA supports distribution and Object Orientation.

 CORBA is an industry standard ; it creates competition among vendors and ensures

quality implementations.

 CORBA provides out-of-the-box multi-vendor inter- operability and portability.

 CORBA is backed by over 700 companies : hardware, software, cable and phone

companies, banks, etc.

 CORBA offers many services called CORBAServices.

 CORBA is well-suited for request/response applications over lower-speed networks(eg:

Ethernet and Token Ring).

 Many application domains (such as avionics, multimedia, and telecommunications)

require real-time guarantees from the underlying networks, operating systems, and

middleware components to achieve QoS requirements and the applications in these

domains must be flexible and reusable.These motivate the use of middleware like

CORBA. But, the performance of CORBA implementations is not yet suited for hard

real-time systems like avionics and constrained latency systems like teleconferencing.

 Communication software and distributed services for next - generation applications

must be reliable, efficient, flexible, and reusable. These requirements motivate the use of

CORBA.

 Synchronous and quasi-synchronous communication.

www.studymafia.org

Some disadvantages:

 CORBA is still growing, and not fully mature.

 While CORBA does support a deferred synchronous request/response, it does not

directly support distributed requests with callback driven response,ie. to perform an

operation on a distributed object, associate a callback with the response, continue with

other processing.When the server responds, the associated callback is automatically

executed within the original callers application.

 The standard lacks many features required for putting large scale applications. Though

specific vendor implemen- tations provide some of these features, they are not part of the

standard today.

 The security aspects have not been sufficiently addressed in CORBA 2.0 These have

been the major obstacles to serious and mission-critical applications development, esp.

those who still employ legacy systems.

 Conventional implementations of CORBA are very good for slow networks like

ethernet, but incur considerable over- head when used for performance-sensitive

applications over high-speed networks.

www.studymafia.org

Some major projects using CORBA

 Distributed Object Management Integration System(DOMIS)

 Dialogos' ORB based applications using ICL's DAIS ORB.

 University of Minnesota's DAMSEL Project (Dynamic Mul- timedia specification

Language) uses CORBA and Java

 The Sunrise project and the TeleMed subproject

 Information Sharing System (ISS)

 A Framework for Distributed Digital Object Services by Robert Kahn and Robert

Wilensky

 Distributed Systems Technology Centre (DSTC), Australia

 The ANSA project (Corba/WWW integration)

 GTE Labs' DOC Distributed Object Computing Group

 The Larch/CORBA project

 TCL/Orbix Integration

 The Web Broker

 The Motorola Iridium project Tools for use with CORBA:

 NetLinks Technology's ORBitize IDL builder/browser development tool

 Black & White Software's suite of development tools

 SNiFF+ development tool

 IDE's Software through Pictures OOA/OOD CASE tool

 METEOR multiparadigm Workflow management system

 ObjecTime's ObjecTime Toolset and CORBA features

 ProtoSoft's Paradigm Plus OOA/OOD CASE tool

 Rational's Rose OOA/OOD CASE tool

 I-Kinetics' Database Component product

 Sandia's IDLdoc documentation tools

TINA-ACE CASE tool

www.studymafia.org

Conclusion

The main conclusion is that CORBA can be used to implement group communication

services and thereby achieve interoperability in a heterogeneous computing environment.

 However, there is a substantial performance cost. As a result, current CORBA

technology is not suitable for implementing high performance group communication

services.

