
www.studymafia.org

A

 Seminar report

on

RESTful Web services

Submitted in partial fulfillment of the requirement for the award of degree

Of Computer Science

SUBMITTED TO: SUBMITTED BY:

www.studymafia.org www.studymafia.org

www.studymafia.org

Preface

I have made this report file on the topic RESTful Web services ; I have tried my best to

elucidate all the relevant detail to the topic to be included in the report. While in the beginning I

have tried to give a general view about this topic.

My efforts and wholehearted co-corporation of each and everyone has ended on a successful

note. I express my sincere gratitude to …………..who assisting me throughout the prepration of

this topic. I thank him for providing me the reinforcement, confidence and most importantly the

track for the topic whenever I needed it.

www.studymafia.org

Abstract

A Web service is a Web page that is meant to be consumed by an autonomous program. Web

service requires an architectural style to make sense of them as there need not be a human being

on the receiver end to make sense of them. REST (REpresentational State Transfer) represents

the model of how the modern Web should work. It is an architectural pattern that distills the way

the Web already works. REST provides a set of architectural constraints that, when applied as a

whole, emphasizes scalability of component interactions, generality of interfaces, independent

deployment of components, and intermediary components to reduce interaction latency, enforce

security, and encapsulate legacy systems.

By its nature, user actions within a distributed hypermedia system require the transfer of large

amounts of data from where the data is stored to where it is used. Thus, the Web architecture

must be designed for large-grain data transfer. The architecture needs to minimize the latency as

much as possible. It must be scalable, secure and capable of encapsulate legacy and new

elements well, as Web is subjected to constant change. REST provides a set of architectural

constraints that, when applied as a whole, address all above said issues.

www.studymafia.org

Introduction

A Web service is a Web page that is meant to be consumed by an autonomous program. Web

Service requires an architectural style to make sense of them as there need not be a human being

on the receiver end to make sense of them.REST (Representational State Transfer) represents the

model of how the modern Web should Work. It is an architectural pattern that distills the way the

Web already works.

REST provides a set of architectural constraints that, when applied as a whole, emphasizes

Scalability of component interactions, generality of interfaces, independent deployment of

Components, and intermediary components to reduce interaction late ncy, enforce security, and

Encapsulate legacy systems.

www.studymafia.org

What is REST?

REST defines a set of architectural principles by which you can design Web services that focus on a
system's resources, including how resource states are addressed and transferred over HTTP by a wide
range of clients written in different languages. If measured by the number of Web services that use it,
REST has emerged in the last few years alone as a predominant Web service design model. In fact, REST
has had such a large impact on the Web that it has mostly displaced SOAP- and WSDL-based interface
design because it's a considerably simpler style to use.

www.studymafia.org

REST Web Services Characteristics

Here are the characteristics of REST:

 Client-Server: a pull-based interaction style: consuming components pull representations.

 Stateless: each request from client to server must contain all the information necessary to

understand the request, and cannot take advantage of any stored context on the server.

 Cache: to improve network efficiency responses must be capable of being labeled as

cacheable or non-cacheable.

 Uniform interface: all resources are accessed with a generic interface (e.g., HTTP GET,

POST, PUT, DELETE).

 Named resources - the system is comprised of resources which are named using a URL.

 Interconnected resource representations - the representations of the resources are

interconnected using URLs, thereby enabling a client to progress from one state to

another.

 Layered components - intermediaries, such as proxy servers, cache servers, gateways, etc,

can be inserted between clients and resources to support performance, security, etc.

www.studymafia.org

Principles of REST Web Service Design

1. The key to creating Web Services in a REST network (i.e., the Web) is to identify all of

the conceptual entities that you wish to expose as services. Above we saw some examples of

resources: parts list, detailed part data, purchase order.

2. Create a URL to each resource. The resources should be nouns, not verbs. For example, do not

use this:

http://www.parts-depot.com/parts/getPart?id=00345

Note the verb, getPart. Instead, use a noun:

http://www.parts-depot.com/parts/00345

3. Categorize your resources according to whether clients can just receive a representation of the

resource, or whether clients can modify (add to) the resource. For the former, make those

resources accessible using an HTTP GET. For the later, make those resources accessible using

HTTP POST, PUT, and/or DELETE.

4. All resources accessible via HTTP GET should be side-effect free. That is, the resource should

just return a representation of the resource. Invoking the resource should not result in modifying

the resource.

5. No man/woman is an island. Likewise, no representation should be an island. In other words,

put hyperlinks within resource representations to enable clients to drill down for more

information, and/or to obtain related information.

6. Design to reveal data gradually. Don't reveal everything in a single response document.

Provide hyperlinks to obtain more details.

7. Specify the format of response data using a schema (DTD, W3C Schema, RelaxNG, or

Schematron). For those services that require a POST or PUT to it, also provide a schema to

specify the format of the response.

8. Describe how your services are to be invoked using either a WSDL document, or simply an

HTML document.

www.studymafia.org

RESTful Web Services Architecture

www.studymafia.org

Advantages

Scalable component interactions

General interfaces

Independently deployed connectors.

Reduced interaction latency.

Strengthened security.

Safe encapsulation of legacy systems.

Supports intermediaries (proxies and gateways) as data transformation and caching

components.

Separates server implementation from the client’s perception of resources (“Cool URIs

 Don’t Change”).

Scales well to large numbers of clients.

Enables transfer of data in streams of unlimited size and type.

www.studymafia.org

Disadvantages

It sacrifices some of the advantages of other architectures.

Stateful interaction with an FTP site.

It retains a single interface for everything

The stateless constraint reflects a design trade-off. The disadvantage is that it may

 decrease network performance by increasing the repetitive data (per-interaction

 overhead) sent in a series of requests, since that data cannot be left on the server in a

 shared context. In addition, placing the application state on the client-side reduces the

 server’s control over consistent application behavior, since the application becomes

 dependent on the correct implementation of semantics across multiple client versions.

www.studymafia.org

 REST Design Guidelines

Some soft guidelines for designing a REST architecture:

1. Do not use "physical" URLs. A physical URL points at something physical -- e.g., an XML file:

"http://www.acme.com/inventory/product003.xml". A logical URL does not imply a physical

file: "http://www.acme.com/inventory/product/003".
o Sure, even with the .xml extension, the content could be dynamically generated. But it

should be "humanly visible" that the URL is logical and not physical.

2. Queries should not return an overload of data. If needed, provide a paging mechanism. For

example, a "product list" GET request should return the first n products (e.g., the first 10), with
next/prev links.

3. Even though the REST response can be anything, make sure it's well documented, and do not

change the output format lightly (since it will break existing clients).
o Remember, even if the output is human-readable, your clients aren't human users.

o If the output is in XML, make sure you document it with a schema or a DTD.

4. Rather than letting clients construct URLs for additional actions, include the actual URLs with

REST responses. For example, a "product list" request could return an ID per product, and the
specification says that you should use http://www.acme.com/product/PRODUCT_ID to get

additional details. That's bad design. Rather, the response should include the actual URL with

each item: http://www.acme.com/product/001263, etc.
o Yes, this means that the output is larger. But it also means that you can easily direct

clients to new URLs as needed, without requiring a change in client code.

5. GET access requests should never cause a state change. Anything that changes the server state

should be a POST request (or other HTTP verbs, such as DELETE).

www.studymafia.org

Conclusion

Service-Oriented Architecture can be implemented in different ways. General focus is on

whatever architecture gets the job done. SOAP and REST have their strengths and weaknesses

and will be highly suitable to some applications and positively terrible for others. The decision of

which to use depends entirely on the circumstances of the application.

