
www.studymafia.org

Computer Memory

Computer Memory can be classified basically into two types:

1. Primary Memory

2. Secondary Memory

Primary Memory:

 It is also called as the Main Memory or Internal Memory. It stores the data for

processing and the Program instructions. It is also the Immediate Access Memory. It is

temporary memory and of limited capacity.

The standard base capacity for Primary memory starts from 640 KB, 1MB, 2MB, 8MB,

128MB, 256MB, 1GB, 2GB, 4GB etc (in multiples of 2). Depending on the needs of

the user.

Functions of Primary Memory:

1. It holds the OS instructions while the computer is booting.

2. It temporarily holds the input instructions from the input devices while the data is

being input and processed.

3. It stores the results temporarily until it is transferred to the respective output

devices.

Types of Primary Memory

1. RAM – Random Access Memory

a. Static RAM

b. Dynamic RAM

2. ROM – Read Only Memory

a. PROM – Programmable Read Only Memory

b. EPROM – Erasable Programmable Read Only Memory

c. EEPROM – Electronic Erasable Programmable Read Only Memory

1. RAM – Random Access Memory

It is a read/write memory. Data can be stored by addressing one RAM cell. The

data and programming instructions fed via the input device are stored in the

RAM temporarily until that program is used. RAM may be updated.

There are 2 types of RAM

a. Static RAM – It retains the stored information until the computer is

working.

b. Dynamic RAM – It retains stored information only until the progam is

working and loses the information once the program execution is

completed.

2. ROM – Read Only Memory

www.studymafia.org

It is a permanent memory. The instructions can only be read by the computer.

The instructions related to system operations are stored here. These instructions

are written by the manufacturer and cannot be edited by the user. When the

system is turned ON, ROM instructions are instantly executed and used in

operation of all I/O devices.

There are 3 types of ROM

a. PROM - Programmable Read Only Memory

It is a non-volatile memory. Instructions can be written once by the

programmer and then subsequently read.

b. EPROM – Erasable Programmable Read Only Memory

It is an improvement over the PROM chips. Instructions can be rewritten by

the programmer using special techniques. The instructions are erased using

UV light and rewritten. To change the instructions the chip has to be removed

from the machine and then put back after the changes have been made.

c. EEPROM – Electronic Erasable Programmable Read Only Memory

It is advancement over EPROM, and the chip need not be taken out from the

machine. Instead the programming is done using software. These chips are

used in Point-of-sale (POS) terminals to record price related information and

can be updated as and when needed. However they are expensive compared

to the normal ROM chips.

Secondary Memory:

 Secondary Memory is memory which stores the data and programming

instructions permanently in the computer system for future use. It could be placed

within the computer or connected externally. Secondary memory is also called Backing

Storage Devices or External Storage Devices. The storage capacity of Secondary

Memory is huge and it is permanent in nature. It can also be regularly updated.

Data from the Secondary Memory is transferred to the Primary Memory before

execution. It is held there temporarily until the execution process is completed and then

transferred to the Secondary Memory.

Types of Secondary Memory

1. Magnetic Tape

2. Magnetic Disk [Floppy Disk, Hard Disk etc]

3. Magnetic Drum

4. MICR [Magnetic Ink Character Reader]

5. CD-ROMs

6. Pen Drives

www.studymafia.org

The Role of Memory

The term "memory" applies to any electronic component capable of
temporarily storing data. There are two main categories of memories:

 internal memory that temporarily memorises data while programs
are running. Internal memory uses microconductors, i.e. fast
specialized electronic circuits. Internal memory corresponds to what
we call random access memory (RAM).

 auxiliary memory (also called physical memory or external memory)
that stores information over the long term, including after the
computer is turned off. Auxiliary memory corresponds to magnetic
storage devices such as the hard drive, optical storage devices such as
CD-ROMs and DVD-ROMs, as well as read-only memories.

Technical Characteristics

The main characteristics of a memory are:

 Capacity, representing the global volume of information (in bits) that
the memory can store

 Access time, corresponding to the time interval between the
read/write request and the availability of the data

 Cycle time, representing the minimum time interval between two
successive accesses

 Throughput, which defines the volume of information exchanged
per unit of time, expressed in bits per second

 Non-volatility, which characterises the ability of a memory to store
data when it is not being supplied with electricity

The ideal memory has a large capacity with restricted access time and cycle
time, a high throughput and is non-volatile.

www.studymafia.org

However, fast memories are also the most expensive. This is why memories
that use different technologies are used in a computer, interfaced with each
other and organized hierarchically.

The fastest memories are located in small numbers close to the processor.
Auxiliary memories, which are not as fast, are used to store information
permanently.

Types of Memories

Random Access Memory

Random access memory, generally called RAM is the system's main
memory, i.e. it is a space that allows you to temporarily store data when a
program is running.

Unlike data storage on an auxiliary memory such as a hard drive, RAM is
volatile, meaning that it only stores data as long as it supplied with
electricity. Thus, each time the computer is turned off, all the data in the
memory are irremediably erased.

Read-Only Memory

Read-only memory, called ROM, is a type of memory that allows you to
keep the information contained on it even when the memory is no longer
receiving electricity. Basically, this type of memory only has read-only
access. However, it is possible to save information in some types of ROM
memory.

www.studymafia.org

Flash Memory

Flash memory is a compromise between RAM-type memories and ROM
memories. Flash memory possesses the non-volatility of ROM memories
while providing both read and write access However, the access times of
flash memories are longer than the access times of RAM.

Main Memory (RAM) Organisation

Computers employ many different types of memory (semi-conductor,
magnetic disks and tapes, DVDs etc.) to hold data and programs. Each type
has its own characteristics and uses. We will look at the way that Main
Memory (RAM) is organised and very briefly at the characteristics of
Register Memory and Disk Memory. Let’s locate these 3 types of memory
in an abstract computer:

Disk DriveDisk Drive

Registers

Arithmetic & Logic
Unit

Control
Unit

RAM

Controller(s)

CPU Main Memory

I/O

RAM

Disk Drive

Register Memory

Registers are memories located within the Central Processing Unit (CPU).
They are few in number (there are rarely more than 64 registers) and also
small in size, typically a register is less than 64 bits; 32-bit and more
recently 64-bit are common in desktops.

www.studymafia.org

The contents of a register can be “read” or “written” very quickly1
however, often an order of magnitude faster than main memory and several
orders of magnitude faster than disk memory.

Different kinds of register are found within the CPU. General Purpose

Registers2 are available for general3 use by the programmer. Unless the
context implies otherwise we’ll use the term "register" to refer to a General
Purpose Register within the CPU. Most modern CPU’s have between 16
and 64 general purpose registers. Special Purpose Registers have specific
uses and are either non-programmable and internal to the CPU or accessed
with special instructions by the programmer. Examples of such registers
that we will encounter later in the course include: the Program Counter
register (PC), the Instruction Register (IR), the ALU Input & Output
registers, the Condition Code (Status/Flags) register, the Stack Pointer
register (SP). The size (the number of bits in the register) of the these
registers varies according to register type. The Word Size of an architecture
is often (but not always!) defined by the size of the general purpose
registers.

In contrast to main memory and disk memory, registers are referenced
directly by specific instructions or by encoding a register number within a
computer instruction. At the programming (assembly) language level of
the CPU, registers are normally specified with special identifiers (e.g. R0,
R1, R7, SP, PC)

As a final point, the contents of a register are lost if power to the CPU is
turned off, so registers are unsuitable for holding long-term information or
information that is needed for retention after a power-shutdown or failure.
Registers are however, the fastest memories, and if exploited can result in
programs that execute very quickly.

Main Memory (RAM)

If we were to sum all the bits of all registers within CPU, the total amount
of memory probably would not exceed 5,000 bits. Most computational
tasks undertaken by a computer require a lot more memory. Main memory

www.studymafia.org

is the next4 fastest memory within a computer and is much larger in size.
Typical main memory capacities for different kinds of computers are: PC

512MB5, fileserver 2GB, database server 8GB. Computer architectures
also impose an architectural constraint on the maximum allowable RAM.

This constraint is normally equal to 2WordSize memory locations.

RAM6 (Random7 Access Memory) is the most common form of Main
Memory. RAM is normally located on the motherboard and so is typically
less than 12 inches from the CPU. ROM (Read Only Memory) is like
RAM except that its contents cannot be overwritten and its contents are not
lost if power is turned off (ROM is non-volatile).

Although slower than register memory, the contents of any location8 in

RAM can still be “read” or “written” very quickly9. The time to read or

write is referred to as the access time and is constant for all RAM
locations.

In contrast to register memory, RAM is used to hold both program code
(instructions) and data (numbers, strings etc). Programs are “loaded” into
RAM from a disk prior to execution by the CPU.

Locations in RAM are identified by an addressing scheme e.g. numbering

the bytes in RAM from 0 onwards10. Like registers, the contents of RAM
are lost if the power is turned off.

www.studymafia.org

Disk Memory

Disk memory11 is used to hold programs and data over the longer term.

The contents of a disk are NOT lost if the power is turned off. Typical

hard disk capacities range from 40GB to over 500 GB (5x1029). Disks are
much slower than register and main memory, the access-time (known as
the seek-time) to data on disk is typically between 2 and 4 milli-seconds,
although disk drives can transfer thousands of bytes in one go achieving
transfer rates from 25MB/s to 500MB/s.

Disks can be housed internally within a computer “box” or externally in an

enclosure connected by a fast USB or firewire cable12. Disk locations are
identified by special disk addressing schemes (e.g. track and sector
numbers).

Summary of Characteristics

11 Some authors refer to disk memory as disk storage.
12 For details about how disks and other storage devices work, check out Tanenbaum or Stallings.

www.studymafia.org

www.studymafia.org

SRAM, DRAM, SDRAM, DDR SDRAM

There are many kinds of RAM and new ones are invented all the time. One
of aims is to make RAM access as fast as possible in order to keep up with
the increasing speed of CPUs.

SRAM (Static RAM) is the fastest form of RAM but also the most
expensive. Due to its cost it is not used as main memory but rather for
cache memory. Each bit requires a 6-transistor circuit.

DRAM (Dynamic RAM) is not as fast as SRAM but is cheaper and is used
for main memory. Each bit uses a single capacitor and single transistor
circuit. Since capacitors lose their charge, DRAM needs to be refreshed
every few millisfeconds. The memory system does this transparently.
There are many implementations of DRAM, two well-known ones are
SDRAM and DDR SDRAM.

SDRAM (Synchronous DRAM) is a form of DRAM that is synchronised
with the clock of the CPU’s system bus, sometimes called the front-side
bus (FSB). As an example, if the system bus operates at 167Mhz over an
8-byte (64-bit) data bus , then an SDRAM module could transfer 167 x 8 ~
1.3GB/sec.

DDR SDRAM (Double-Data Rate DRAM) is an optimisation of SDRAM
that allows data to be transferred on both the rising edge and falling edge of
a clock signal. Effectively doubling the amount of data that can be
transferred in a period of time. For example a PC-3200 DDR-SDRAM
module operating at 200Mhz can transfer 200 x 8 x 2 ~ 3.2GB/sec over an
8-byte (64-bit) data bus.

ROM, PROM, EPROM, EEPROM, Flash

In addition to RAM, they are also a range of other semi-conductor
memories that retain their contents when the power supply is switched off.

ROM (Read Only Memory) is a form of semi-conductor that can be written
to once, typically in bulk at a factory. ROM was used to store the “boot”
or start-up program (so called firmware) that a computer executes when
powered on, although it has now fallen out-of-favour to more flexible

www.studymafia.org

memories that support occasional writes. ROM is still used in systems
with fixed functionalities, e.g. controllers in cars, household appliances etc.

PROM (Programmable ROM) is like ROM but allows end-users to write
their own programs and data. It requires a special PROM writing
equipment. Note: users can only write-once to PROM.

EPROM (Erasable PROM). With EPROM we can erase (using strong
ultra-violet light) the contents of the chip and rewrite it with new contents,
typically several thousand times. It is commonly used to store the “boot”
program of a computer, known as the firmware. PCs call this firmware, the
BIOS (Basic I/O System). Other systems use Open Firmware. Intel-based
Macs use EFI (Extensible Firmware Interface).

EEPROM (Electrically Erasable PROM). As the name implies the contents
of EEPROMs are erased electrically. EEPROMSs are also limited to the
number of erase-writes that can be performed (e.g, 100,000) but support
updates (erase-writes) to individual bytes whereas EPROM updates the
whole memory and only supports around 10,000 erase-write cycles.

FLASH memory is a cheaper form of EEPROM where updates (erase-
writes) can only be performed on blocks of memory, not on individual
bytes. Flash memories are found in USB sticks, flash cards and typically
range in size from 32M to 2GB. The number of erase/write cycles to a
block is typically several hundred thousand before the block can no longer
be written.

www.studymafia.org

Main Memory Organisation

Main memory can be considered to be organised as a matrix of bits. Each
row represents a memory location, typically this is equal to the word size of
the architecture, although it can be a word multiple (e.g. 2xWordsize) or a

partial word (e.g. half the wordsize). For simplicity we will assume that

data within main memory can only be read or written a single row

(memory location) at a time. For a 96-bit memory we could organise the
memory as 12x8 bits, or 8x12 bits or, 6x16 bits, or even as 96x1 bits or

1x96 bits. Each row also has a natural number called its address13 which
is used for selecting the row:

Address <–––––––– 8 bit ––
–––––>

0

1

2

3

4

5

6

7

8

9

10

11

Address <––––––––––––– 12 bit ––––––
–––––––>

0

1

2

3

4

www.studymafia.org

5

6

7

Address <––––––––––––––––––– 16 bit ––––––––
–––––––––––>

0

1

2

3

4

5

www.studymafia.org

Byte Addressing

Main-memories generally store and recall rows, which are multi-byte in
length (e.g. 16-bit word = 2 bytes, 32-bit word = 4 bytes). Many

architectures, however, make main memory byte-addressable rather than

word addressable. In such architectures the CPU and/or the main memory
hardware is capable of reading/writing any individual byte. Here is an

example of a main memory with 16-bit memory locations14. Note how the
memory locations (rows) have even addresses.

Word Address 16 bit = 2 bytes

0

2

4

6

8

10

12

14

16

18

20

Byte Ordering

The ordering of bytes within a multi-byte data item defines the endian-
ness of the architecture.

In BIG-ENDIAN systems the most significant byte of a multi-byte data
item always has the lowest address, while the least significant byte has the
highest address.

In LITTLE-ENDIAN systems, the least significant byte of a multi-byte data

www.studymafia.org

item always has the lowest address, while the most significant byte has the
highest address.

In the following example, table cells represent bytes, and the cell numbers
indicate the address of that byte in main memory. Note: by convention we
draw the bytes within a memory word left-to-right for big-endian systems,
and right-to-left for little-endian systems.

Word

Addres
s

Big-Endian

Word
Address

Little-Endian

0 0 1 2 3 0 3 2 1 0

4 4 5 6 7 4 7 6 5 4

8 8 9 10 11 8 11 10 9 8

12 12 13 14 15 12 15 14 13 12

 MSB –––––––––-> LSB MSB –––––––––
––> LSB

Note: an N-character ASCII string value is not treated as one large multi-
byte value, but rather as N byte values, i.e. the first character of the string
always has the lowest address, the last character has the highest address.
This is true for both big-endian and little-endian. An N-character Unicode
string would be treated as N two-byte value and each two-byte value would
require suitable byte-ordering.

Example: Show the contents of memory at word address 24 if that word
holds the number given by 122E 5F01H in both the big-endian and the
little-endian schemes?

 Big Endian Little Endian

 MS
B

–––––––
––>

LS
B

 MS
B

–––––––
––>

LS
B

 24 25 26 27 27 26 25 24

 Word 24 12 2E 5F 01 Word 24 12 2E 5F 01

www.studymafia.org

Example: Show the contents of main memory from word address 24 if
those words hold the text JIM SMITH.

 Big Endian Little Endian

 +0 +1 +2 +3 +3 +2 +1 +0

 Word 24 J I M Word 24 M I J

Word 28 S M I T Word 28 T I M S

Word 32 H ? ? ? Word 32 ? ? ? H

The bytes labelled with ? are unknown. They could hold important data,
or they could be don’t care bytes – the interpretation is left up to the
programmer.

Unfortunately computer systems15, in use today are split between those

that are big-endian, and those that are little-endian16. This leads to
problems when a big-endian computer wants to transfer data to a little-
endian computer. Some architectures, for example the PowerPC and ARM,
allow the endian-ness of the architecture to be changed programmatically.

Word Alignment

Although main-memories are generally organised as byte-addressed rows
of words and accessed a row at a time, some architectures, allow the CPU
to access any word-sized bit-group regardless of its byte address. We say

that accesses that begin on a memory word boundary are aligned accesses

while accesses that do not begin on word boundaries are unaligned

accesses.

www.studymafia.org

Address Memory (16-bit)
word

0 MSB LSB Word starting at Address 0 is Aligned

2

4 MSB Word starting at Address 5 is
Unaligned

6 LSB

Reading an unaligned word from RAM requires (i) reading of adjacent
words, (ii) selecting the required bytes from each word and (iii)
concatenating those bytes together => SLOW. Writing an unaligned word

is more complex and slower17. For this reason some architectures prohibit
unaligned word accesses. e.g. on the 68000 architecture, words must not be
accessed starting from an odd-address (e.g. 1, 3, 5, 7 etc), on the SPARC
architecture, 64-bit data items must have a byte address that is a multiple
of 8.

Memory Modules, Memory Chips

So far, we have looked at the logical organisation of main memory.
Physically RAM comes on small memory modules (little green printed
circuit-boards about the size of a finger). A typical memory module holds
512MB to 2GB. The computer’s motherboard will have slots to hold 2, 4
maybe 8 memory modules. Each memory module is itself comprised of
several memory chips. For example here are 3 ways of forming a 256x8 bit
memory module.

1

1
1

1
0

0

1
1

Eight
256 x 1bit RAMs

1

1
1

1

0
0

1
1

256 x

4bit

RAM
256 x

4bit

RAM256 x 8bit R
AM

1

1

1

0

1
1

1

0

www.studymafia.org

In the first case, main memory is built with a single memory chip. In the
second, we use two memory chips, one gives us the most significant 4 bits,
the other, the least significant 4 bits. In the third we use 8 memory chips,
each chip gives us 1 bit - to read an 8 bit memory word, we would have to
access all 8 memory chips simultaneously and concatenate the bits.

On PCs, memory modules are known as DIMMs (dual inline memory
modules) and support 64-bit transfers. The previously generation of
modules were called SIMMs (single inline memory modules) and
supported 32-bit data transfers.

Example: Given Main Memory = 1M x 16 bit (word addressable),

 RAM chips = 256K x 4 bit

 Module 0 Module 1 Module 2 Module 3

2
1

8

C
H
I
P
0

C
H
I
P
1

C
H
I
P
2

C
H
I
P
3

C
H
I
P
4

C
H
I
P
5

C
H
I
P
6

C
H
I
P
7

C
H
I
P
8

C
H
I
P
9

C
H
I
P
10

C
H
I
P
11

C
H
I
P
12

C
H
I
P
13

C
H
I
P
14

C
H
I
P
15

 4x4 bits 4x4 bits 4x4 bits 4x4 bits

 RAM chips per memory module = Width of Memory
Word

= 16/4 =
4

 Width of RAM Chip

18 bits are required to address a RAM chip (since 256K = 218 = Length of
RAM Chip)

www.studymafia.org

A 1Mx16 bit word-addressed memory requires 20 address bits (since 1M

=2
20

)

Therefore 2 bits (=20–18) are needed to select a module.

The total number of RAM Chips = (1M x 16) / (256K x 4) = 16.

Total number of Modules = Total number of RAM chips /
RamChipsPerModule = 16/4 = 4

Interleaved Memory

When memory consists of several memory modules, some address bits will
select the module, and the remaining bits will select a row within the
selected module.

When the module selection bits are the least significant bits of the

memory address we call the resulting memory a low-order

interleaved memory.

When the module selection bits are the most significant bits of the

memory address we call the resulting memory a high-order

interleaved memory.

Interleaved memory can yield performance advantages if more than one
memory module can be read/written at a time:-

(I) for low-order interleave if we can read the same row in each module.
This is good for a single multi-word access of sequential data such as
program instructions, or elements in a vector,

(ii) for high-order interleave, if different modules can be independently
accessed by different units. This is good if the CPU can access rows
in one module, while at the same time, the hard disk (or a second
CPU) can access different rows in another module.

Example: Given that Main Memory = 1Mx8bits, RAM chips = 256K x
4bit. For this memory we would require 4x2=8 RAM chips. Each chip

would require 18 address bits (ie. 218 = 256K) and the full 1Mx16 bit

memory would requires 20 address bits (ie. 220 = 1M)

www.studymafia.org

CPU Organisation & Operation

The Fetch-Execute Cycle

The operation of the CPU18 is usually described in terms of the Fetch-

Execute cycle19.

Fetch-Execute

Cycle

The cycle raises many interesting questions,

e.g.

Fetch the
Instruction

What is an Instruction? Where is the Instruction?
Why does it need to be fetched? Isn't it okay
where it is? How does the computer keep track
of instructions? Where does it put the instruction
it has just fetched?

Increment the
Program Counter

What is the Program Counter? What does the
Program Counter count? Increment by how
much? Where does the Program Counter point to
after it is incremented?

Decode the
Instruction

Why does the instruction need to be decoded?
How does it get decoded?

Fetch the Operands What are operands? What does it mean to fetch?
Is this fetching distinct from the fetching in Step
1 above? Where are the operands? How many
are there? Where do we put the operands after
we fetch them?

Perform the
Operation

Is this the main step? Couldn't the computer
simply have done this part? What part of the
CPU performs this operation?

Store the results What results? Where from? Where to?

Repeat forever Repeat what? Repeat from where? Is it really an
infinite loop? Why? How do these steps execute
any instructions at all?

In order to appreciate the operation of a computer we need to answer such
questions and to consider in more detail the organisation of the CPU.

Representing Programs

Each complex task carried out by a computer needs to be broken down into

a sequence of simpler tasks and a binary machine instruction is needed

for the most primitive tasks. Consider a task that adds two numbers20,

held in memory locations designated by B and C21 and stores the result in
memory location designated by A.

 A = B + C

This assignment can be broken down (compiled) into a sequence of simpler

tasks or assembly instructions, e.g:

Assembly

Instruction

Effect

LOAD R2, B Copy the contents of memory location designated by B
into Register 2

ADD R2, C Add the contents of the memory location designated by C
to the contents of Register 2 and put the result back into
Register 2

STORE R2,
A

Copy the contents of Register 2 into the memory location
designated by A.

Each of these assembly instructions needs to be encoded into binary for
execution by the Central Processing Unit (CPU). Let’s try this encoding
for a simple architecture called TOY1.

TOY1 Architecture

TOY1 is a fictitious architecture with the following characteristics:

1024 x 16-bit words of RAM maximum. RAM is word-addressable.

4 general purpose registers R0, R1, R2 and R3. Each general purpose
register is 16-bits (the same size as a memory location).

16 different instructions that the CPU can decode and execute, e.g.
LOAD, STORE, ADD, SUB and so on. These different instructions

constitute the Instruction Set of the Architecture.

The representation for integers will be two’s complement.

For this architecture, the architect (us) needs to define a coding scheme22

for instructions. This is termed the Instruction Format. Lets look at an
example before we consider how we arrived at it. Here’s our instruction
format for TOY1:

TOY1 Instruction Format

TOY1 instructions are 16-bits (so they will fit into a main-memory word).

Each instruction is divided into a number of instruction fields that encode
a different piece of information for the CPU.

Field
Name
Field

Width

OPCOD

E
4-bits

RE

G
2-

bits

ADDRESS
10-bits

The OPCODE23 field identifies the CPU operation required. Since TOY1
only supports 16 instructions, these can be encoded as a 4-bit natural

number. For TOY1, opcodes 1 to 4 will be24:

 0001 = LOAD 0010 = STORE 0011 = ADD 0100 = SUB

The REG field defines a General CPU Register. Arithmetic operations will

use 1 register operand and 1 main memory operand, results will be
written back to the register. Since TOY1 has 4 registers; these can be
encoded as a 2-bit natural number:

 00 = Register 0 01 = Register 1 10 = Register 2 11 = Register 3

The ADDRESS field defines the address of a word in RAM. Since TOY1
can have upto 1024 memory locations; a memory address can be encoded
as a 10-bit natural number.

If we define addresses 200H, 201H and 202H for A, B and C, we can
encode the example above as:

Assembly

Instruction

Machine

Instruction

LOAD R2,
[201H]

0001 10 10 0000
0001

ADD R2,
[202H]

0011 10 10 0000
0010

STORE R2,
[200H]

0010 10 10 0000
0000

Memory Placement of Program and Data

In order to execute a TOY1 program, its instructions and data needs to

placed within main memory25. We’ll place our 3-instruction program in
memory starting at address 080H and we’ll place the variables A, B and C
at memory words 200H, 201H, and 202H respectively. Such placement
results in the following memory layout prior to program execution. For
convenience, memory addresses and memory contents are also given in
hex.

Memory Address

in binary & hex

Machine Instruction

 OP Reg Address
Assembly

Instruction

 0000 1000 0000
 0 8 0

 0001 10 10 0000 0001

 1 A 0 1

LOAD R2,
[201H]

 0000 10000001
 0 8 1

 0011 10 10 0000 0010

 3 A 0 2

ADD R2,
[202H]

 0000 10000010
 0 8 2

 0010 10 10 0000 0000

 2 A 0 0

STORE R2,
[200H]

Etc Etc Etc

 0010 00000000
 2 0 0

 0000 0000 0000 0000
 0 0 0 0

A = 0

 0010 00000001
 2 0 1

 0000 0000 0000 1001
 0 0 0 9

B = 9

 0010 00000010
 2 0 2

 0000 0000 0000 0110
 0 0 0 6

C = 6

Of course, the big question is “How is such a program executed by the
TOY1 CPU?”

CPU Organisation

ALU

General
Registers

Instruction Decoder

Program Counter

Instruction Register

Control Unit

Input Register 1

In
te

rn
al

 B
u

s

Central Processing Unit (CPU) Memory

Address Bus

Data Bus

Input Register 2

Output
Register

000
001
002

3FD
3FE
3FF

R0
R1
R2
R3

$

$

Addr.

Control Bus

Read/Write

The Program Counter (PC) is a special register that holds the address of
the next instruction to be fetched from Memory (for TOY1, the PC is 10-

bits wide). The PC is incremented26 to "point to" the next instruction
while an instruction is being fetched from main memory.

The Instruction Register (IR) is a special register that holds each
instruction after it is fetched from main memory. For TOY1, the IR is 16-
bits since instructions are 16-bit wide.

The Instruction Decoder is a CPU component that decodes and interprets
the contents of the Instruction Register, i.e. its splits whole instruction into
fields for the Control Unit to interpret. The Instruction decoder is often
considered to be a part of the Control Unit.

The Control Unit is the CPU component that co-ordinates all activity
within the CPU. It has connections to all parts of the CPU, and includes a
sophisticated timing circuit.

The Arithmetic & Logic Unit (ALU) is the CPU component that carries
out arithmetic and logical operations e.g. addition, comparison, boolean
AND/OR/NOT.

The ALU Input Registers 1 & 2 are special registers that hold the input
operands for the ALU.

The ALU Output Register is a special register that holds the result of an
ALU operation. On completion of an ALU operation, the result is copied
from the ALU Output register to its final destination, e.g. to a CPU register,
or main-memory, or to an I/O device.

The General Registers R0, R1, R2, R3 are available for the programmer
to use in his/her programs. Typically the programmer tries to maximise the
use of these registers in order to speed program execution. For TOY1, the
general registers are the same size as memory locations, i.e. 16-bits.

The Buses serve as communication highways for passing information
within the CPU (CPU internal bus) and between the CPU and the main

memory (the address bus, the data bus, and the control bus). The
address bus is used to send addresses from the CPU to the main memory;
these addresses indicate the memory location the CPU wishes to read or
write. Unlike the address bus, the data bus is bi-directional; for writing, the
data bus is used to send a word from the CPU to main-memory; for
reading, the data bus is used to send a word from main-memory to the

CPU. For TOY1, the Control bus27 is used to indicate whether the CPU
wishes to read from a memory location or write to a memory location. For

simplicity we’ve omitted two special registers, the Memory Address

Register (MAR) and the Memory Data Register (MDR). These registers
lie at the boundary of the CPU and Address bus and Data bus respectively
and serve to buffer data to/from the buses.

Buses can normally transfer more than 1-bit at a time. For the TOY1, the
address bus is 10-bits (the size of an address), the data bus is 16-bits (size
of a memory location), and the control bus is 1-bit (to indicate a memory
read operation or a memory write operation).

Interlude: the Von Neumann Machine Model

Most computers conform to the von Neumann’s machine model, named
after the Hungarian-American mathematician John von Neumann (1903-
57).

In von Neumann’s model, a computer has 3 subsystems (i) a CPU, (ii) a
main memory, and (iii) an I/O system. The main memory holds the
program as well as data and the computer is allowed to manipulate its own

program28. In the von-Neumann model, instructions are executed

sequentially (one at a time).

In the von-Neumann model a single path exists between the control until

and main-memory, this leads to the so-called "von Neumann bottleneck"
since memory fetches are the slowest part of an instruction they become the
bottleneck in any computation.

Instruction Execution (Fetch-Execute-Cycle Micro-steps)

In order to execute our 3-instruction program, the control unit has to issue
and coordinate a series of micro-instructions. These micro-instructions
form the fetch-execute cycle. For our example we will assume that the
Program Counter register (PC) already holds the address of the first
instruction, namely 080H.

LOAD R2, [201H]

 0000 1000 0000
 0 8 0

0001 10 10 0000

 0001
 1 A 0 1

Copy the value in memory
word 201H into Register 2

Control Unit Action

FETCH

INSTRUCTION29

Data flows

PC to Address Bus30 080H 080H Address Bus

0 to Control Bus31 0 0 Control Bus

Address Bus to Memory 080H 080H Memory
Control Bus to Memory 0 READ

0 Memory

Increment PC32 080 INC
 081H PC becomes

PC+133
Memory [080H] to Data
Bus

1A01
H

 1A01H Data Bus

Data Bus to Instruction
Register

1A01
H

 1A01H Instruction
Register

DECODE

INSTRUCTION

IR to Instruction Decoder 1A01
H

 1A01H Instruction
Decoder

Instruction Decoder to

Control Unit34

1, 2,
201H

 1, 2,
201H

Control Unit

EXECUTE

INSTRUCTION35

Control Unit to Address
Bus

201H 201H Address Bus

31

0 to Control Bus 0 0 Control Bus
Address Bus to Memory 201H 201H Memory
Control Bus to Memory 0 READ

0 Memory

Memory [201H] to Data
bus

0009H 0009H Data Bus

Data Bus to Register 2 0009H 0009H Register 2

ADD R2, [202H]

 0000 1000 0001
 0 8 1

0011 10 100000

 0002
 3 A 0 2

Add36 the value in memory
word 202H to Register 2

Control Unit Action

FETCH INSTRUCTION

Data flows

PC to Address Bus 081H 081H Address Bus
0 to Control Bus 0 0 Control Bus
Address Bus to Memory 081H 081H Memory
Control Bus to Memory 0 READ

0 Memory

Increment PC 081H INC
 082H PC becomes

PC+1
Memory [081H] to Data
Bus

3A02
H

 3A02H Data Bus

Data Bus to Instruction
Register

3A02
H

 3A02H Instruction
Register

DECODE INSTRUCTION

IR to Instruction Decoder 3A02
H

 3A02H Instruction
Decoder

Instruction Decoder to
Control Unit

3, 2,
202H

 3, 2,
202H

Control Unit

EXECUTE
INSTRUCTION

Register 2 to ALU Input
Reg 1

0009 0009 ALU Input Reg
1

Control Unit to Address
Bus

202H 202H Address Bus

0 to Control Bus 0 0 Control Bus
Address Bus to Memory 202H 202H Memory
Control Bus to Memory 0 READ

0 Memory

Memory [202H] to Data 0006H 0006H Data Bus

bus
Data Bus to ALU Input
Reg 2

0006H 0006H ALU Input Reg
2

Control Unit to ALU ADD
 000FH Output Register

ALU Output Reg to
Register 2

000F 000FH Register 2

STORE R2, [200H]

 0000 1000 0001
 0 8 2

0010 10 100000

 0000
 2 A 0
 0

Copy the value in Register
2 into memory word 202H

Control Unit Action

FETCH INSTRUCTION

Data flows

PC to Address Bus 082H 082H Address Bus
0 to Control Bus 0 0 Control Bus
Address Bus to Memory 082H 082H Memory
Control Bus to Memory 0 READ

0 Memory

Increment PC 082H INC
 083H PC becomes

PC+1
Memory [082] to Data Bus 2A00

H
 2A00H Data Bus

Data Bus to Instruction
Register

2A00
H

 2A00H Instruction
Register

DECODE INSTRUCTION

IR to Instruction Decoder 2A00 2A00 Instruction
Decoder

Instruction Decoder to
Control Unit

2, 2,
200H

 2, 2,
200H

Control Unit

EXECUTE
INSTRUCTION

Register 2 to Data Bus 000FH 000FH Data Bus
Control Unit to Address
Bus

200H 200H Address Bus

1 to Control Bus 1 1 Control Bus
Data Bus to Memory 000FH 000FH Memory
Address Bus to Memory 200H 200H Memory
Control Bus to Memory 1 WRITE

1 Memory

TOY1 Programming

How is computer such as TOY1 programmed? We’ll consider this

question with some examples. Let’s first define a basic Instruction Set for

the TOY1 architecture37:

OP

Code

Assembler

Format

Action

0000 STOP Stop Program Execution

0001 LOAD Rn,

[addr]

Rn = Memory [addr]

0010 STORE Rn,

[addr]

Memory [addr] = Rn

0011 ADD Rn,

[addr]

Rn = Rn + Memory

[addr]

0100 SUB Rn,

[addr]

Rn = Rn – Memory

[addr]

0101 GOTO addr PC = addr

0110 IFZER Rn, addr IF Rn = 0 THEN PC =

addr

0111 IFNEG Rn, addr IF Rn < 0 THEN PC =

addr

Example 1: Multiplication

Given these instructions lets write a TOY1 assembly program, which will
perform the following assignment:

 A = B * C

where A, B and C denote integers placed at memory words 100H, 101H
and 102H respectively. The first point to observe with this example is that
a multiply operation is not available in the TOY1 instruction set!

Therefore we need to consider if we can use other instructions to carry out
the multiplication. The obvious solution is to use repeated addition:

 B*C B
N1

C

Example: 12 * 3 = 12 + 12 + 12

 12 * 1 = 12

 12 * 0 = 0

Let’s first write the multiplication algorithm in Pseudo Code

 ; Given: A, B, C
 ; Pre: C >= 0 Why do we have this pre-condition?
 ; Post: A = B * C

 sum = 0 ; sum will accumulate the answer
 n = C ; n will indicate how many additions remain

 loop

 exit when n <= 0
 sum = sum + B
 n = n - 1

 end loop

 A = sum

Let’s try translating (compiling) this Pseudo Code to TOY1 instructions.
Since we have 4 general registers, it is worthwhile allocating frequently
used variables to them as this will lead to faster execution. Let’s allocate
Register 1 to hold 'sum', and Register 2 to hold 'n'.

sum = 0

The first assignment sum=0 yields our first problem. How do we get zero
(or any constant) into a Register?

The only instruction that we can use to set a register is LOAD Rn, addr.
Therefore we must reserve a memory word and pre-set it to zero before
program execution begins. Lets place zero in memory word 200H. Now to
perform sum = 0 we have:

 LOAD R1, [200H] ; sum = 0

Let’s place instructions starting at memory word 80H:

Addres

s

Assembler Instruction Comment38

80H LOAD R1, [200H] ; sum = 0

200H 0 ; holds zero

n = C

The next statement is n = C. This is easy to translate:

81H LOAD R2, [102H] ; n = C

exit when n <= 0

What does the loop exit when n <= 0 statement mean in TOY1 terms?

Lets consider a simpler example first: loop exit when n = 0. On the TOY1
this statement has a simpler translation, namely:

Loop

 exit when n = 0
 instructions

end loop

Address Instruction

L0 IFZER R2, Ly
L1 instructions
... ...

Lx GOTO L0
Ly

Note: GOTO alters the Program Counter register thereby causing an

unconditional branch in the order of program execution. IFZER alters the
Program Counter only if the contents of the specified Register are zero. To

handle exit when n <= 0 we need to skip to the end of the loop if R2 is
zero or if R2 is negative:

Loop

 exit when n <=
0
 instructions

end loop

Address Instruction

L0 IFZER R2,

Ly
L1 IFNEG R2, Ly

L2 instructions
... ...

Lx GOTO L0
Ly

For our example we now have the following assembly program:

Address Assembler

Instruction

Comment

80H LOAD R1,
[200H]

; sum = 0

81H LOAD R2, ; n = C

[102H]
82H IFZER R2, Ly ; exit when n<=0
83H IFNEG R2, Ly ; we will define Ly when we can
.....

Lx GOTO 82H ; end loop

Ly
.....
100H A ; holds A
101H B ; holds B
102H C ; holds C
.....
200H 0 ; holds 0

sum = sum + B
n = n – 1

Let’s continue with: sum = sum + B. This is easy, namely

 84H ADD R1, [101H] ; sum = sum + B

For n = n – 1 we will assume that location 201H is pre-set to the constant
1.

 85H SUB R2, [201H] ; n = n–1

 201H 1 ; Holds the value 1

end loop
A = sum

Adding STORE R1, 100H for A = sum and a STOP instruction we arrive
at the final program:

Add

r

Assembler

Instruct.

Comment Machine

Instruction

80H LOAD R1,
[200H]

; sum = 0 0001 0110 0000
0000

81H LOAD R2,
[102H]

; n = C 0001 1001 0000
0010

82H IFZER R2, 87H ; exit when n = 0 0110 1000 1000
0111

83H IFNEG R2, 87H ; exit when n < 0 0111 1000 1000
0111

84H ADD R1,
[101H]

; sum = sum + B 0011 0101 0000
0001

85H SUB R2,
[201H]

; n = n - 1 0100 1010 0000
0001

86H GOTO 82H ; end loop 0101 0000 1000
0010

87H STORE R1,
[100H]

; A = sum 0010 0101 0000
0000

88H STOP ; End of program 0000 0000 0000

0000
... ...
100
H

A ; Holds A initial value of A

101
H

B ; Holds B initial value of B

102
H

C ; Holds C initial value of C

... ...
200
H

0 ; Holds Zero 0000 0000 0000
0000

201
H

1 ; Holds One 0000 0000 0000
0001

Multiplication (An improvement)

The multiply program will work correctly but can be improved. Consider 3
* 1000 if C is greater than B then it will be faster to compute 1000 * 3.
How can we adapt our program to handle this case? Consider and work
through the following solution:

sum = 0

if B <= C then
 big=C, n=B

else C < B
 big=B, n=C

end if
loop exit when n

<= 0
 sum = sum +

big
 n = n – 1

end loop
A = sum

Addr Instruction
80H LOAD R1, [200H] ; sum=0

81H LOAD R0, [102H] ; if
C<B

82H SUB R0, [101H] ; then
ELSE

83H IFNEG R0, 88H

84H LOAD R0, [102H] ; then
85H STORE R0, [202H]; big
= C
86H LOAD R2, [101H] ; n = B

87H GOTO 8BH

88H LOAD R0, [101H] ; else
89H STORE R0, [202H];
big=B
8AH LOAD R2, [102H];
n=C

8BH etc ; loop....
...
202H ... ; Holds
big

Example 2: Vector Sum

Write a sequence of TOY1 instructions (and constants) to sum 100 integers
stored consecutively starting at memory word 200H. The sum is to be left
in Register 0.

Again, lets first write the Pseudo Code for the problem:

 sum = 0
 n = 100
 addr = 200H

 loop

 exit when n <= 0
 sum = sum + RAM [addr]
 addr = addr + 1
 n = n - 1

 end loop

Looking at this code, we find that the main "difficulty" is how to perform

 sum = sum + RAM [addr]

There doesn't appear to be any way of accessing memory words based on a
"Variable". We need therefore to extend TOY1 to include an indirect

addressing capability39.

Indirect Addressing Instructions for TOY1

OP

Code

Assembler

Format

Action

1001 LOAD Rn, [Rm] Rn = Memory [Rm]40

1010 STORE Rn, [Rm] Memory [Rm] = Rn

1011 ADD Rn, [Rm] Rn = Rn + Memory [Rm]

1100 SUB Rn, [Rm] Rn = Rn – Memory [Rm]

A second Instruction Format is also needed for these instructions41. We
will use the following:

OPCODE REGn REGm Unused42

4-bits 2-bits 2-bits 8-bits

Example: Given this format the TOY1 instruction ADD R1, [R2] would
be coded as

 1011 01 10 0000 0000 in binary or B600H in hexadecimal.

Vector Sum Example Contd.

The vector sum example is now straightforward. This program will be
placed at 0FH onwards, and the registers allocated as follows: R0 for
'sum', R1 for 'n', R2 for 'addr'

sum = 0
n = 100
addr = 200H

loop

 exit when n <= 0
 sum = sum + RAM
[addr]
 addr = addr + 1

0 0 ; Holds 0
1 1 ; Holds 1
2 100 ; Holds 100
3 200H ; Holds 200H
...
0FH LOAD R0, [0] ; sum = 0
10H LOAD R1, [2] ; n = 100
11H LOAD R2, [3] ; addr = 200H

 n = n - 1

end loop
; Result in Register R0

12H IFZER R1, 18H ; exit when
n<=0
13H IFNEG R1, 18H
14H ADD R0, [R2] ; sum =
sum+...
15H ADD R2, [1] ; addr = addr + 1
16H SUB R1, [1] ; n = n – 1

17H GOTO 12H ; end loop
18H STOP

REFERENCES

1. www.google.com

2. www.wikipedia.org

3. www.studymafia.org

4. www.pptplanet.com

http://www.google.com/
http://www.wikipedia.org/
http://www.studymafia.org/
http://www.pptplanet.com/

