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1. 

 
 
 
INTRODUCTION 

 
 

The continued scaling of integrated circuit fabrication technology will 

dramatically affect the architecture of future computing systems. Scaling will 

make computation cheaper, smaller, and lower power, thus enabling more 

sophisticated computation in a growing number of embedded applications. This 

spread of low-cost, low power computing can easily be seen in today’s wired 

(e.g. gigabit Ethernet or DSL) and wireless communication devices, gaming 

consoles, and handheld PDAs. These  new applications have different 

characteristics from today’s standard workloads, often containing highly data- 

parallel streaming behavio4r. While the applications will demand ever-growing 

compute performance, power (ops/W) and computational efficiency (ops/$) 

are also paramount; therefore, designers have created narrowly focused 

custom silicon solutions to meet these needs. 

However, the scaling of process technologies makes the construction of 

custom solutions increasingly difficult due to the increasing complexity of the 

desired devices. While designer productivity has improved over time, and 

technologies like system-on-a-chip help to manage complexity, each generation 

of complex machines is more expensive to design than the previous one. High 

non-recurring  fabrication costs (e.g. mask  generation) and  long  chip 

manufacturing delays mean that designs must be all the more carefully 

validated, further increasing the design costs. Thus, these large complex chips 

are only cost-effective if they can be sold in large volumes. This need for a large 

market runs counter to the drive for efficient, narrowly- focused, custom 

hardware solutions. 

To fill the need for widely applicable computing designs, a number of 

more general-purpose processors are targeted at a class of problems, rather 

than at specific applications. Tri-media, Equator, Mpact, IRAM, and many other 

projects are all attempts to create general purpose computing engine for multi-
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media applications. However, these attempts to create more universal 

computing elements have some limitations. First, these machines have been 

optimized for applications where the parallelism can be expressed at the 

instruction level using either VLIW or vector engines. However, they would not 

be very efficient for applications that lacked parallelism at this level, but had, 

for example, thread level parallelism. Second, their globally shared resource 

models (shared multi-ported registers and memory) will be increasingly 

difficult to implement in future technologies in which on-chip communication 

costs are appreciable. Finally, since these machines are generally compromise 

solutions between true signal processing engines and general-purpose 

processors, their efficiency at doing either task suffers. 

On the other hand, the need for scalable architectures has also led to 

proposals for modular, explicitly parallel architectures that typically consist of 

a number of processing elements and memories on a die connected together by 

a network. The modular nature of these designs ensures that wire lengths 

shrink as technologies improve, allowing wire and gate delays to scale at 

roughly the same rate. Additionally, the replication consumes the growing 

number of transistors. The multiple processing elements take advantage of 

both instruction-level and thread-level parallelism. One of the most prominent 

architectures in this class is the MIT Raw project, which focuses on the 

development of compiler technologies that take advantage of exposed low-level 

hardware. 

Smart Memories combines the benefits of both approaches to create a 

partitioned, explicitly parallel, reconfigurable architecture for use as a future 

universal computing element. Since different application spaces naturally have 

different communication patterns and memory needs, finding a single topology 

that fits well with all applications is very difficult. Rather than trying to find a 

general solution for all applications, we tailor the appearance of the on-chip 
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(and future) VLSI chips require active repeater insertion for minimum delay. 

The presence of repeaters means that adding some reconfigurable logic to 

these wires will only modestly impact their performance. Reconfiguration at 

this level leads to coarser-grained configurability than previous reconfigurable 

architectures, most of which were at least in part based on FPGA 

implementations. Compared to these systems, Smart Memories trades away 

some flexibility for lower overheads, more familiar programming models, and 

higher efficiency. 
 
 
 
 

2. 

 
 
 
 
SMART MEMORIES OVERVIEW 

 
At the highest level, a Smart Memories chip is a modular computer. It 

contains an array of processor tiles and on-die DRAM memories connected by a 

packet-based, dynamically-routed network (Figure 1). The network also 

connects to high-speed links on the pins of the chip to allow for the 

construction of multi-chip systems. Most of the initial hardware design works 

in the Smart Memories project has been on the processor tile design and 

evaluation, so this paper focuses on these aspects.
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The organization of a processor tile is a compromise between VLSI wire 

constraints and computational efficiency. Our initial goal was to make each 

processor tile small enough so the delay of a repeated wire around the semi- 

perimeter of the tile would be less then a clock cycle. This leads to a tile edge of 

around 2.5mm in a 0.1m technology. This sized tile can contain a processor 

equivalent to a MIPS R5000, a 64-bit, 2-issue, in-order machine with 64KB of 

on-die cache. Alternately, this area can contain 2-4MB of embedded DRAM 

depending on the assumed cell size. A 400mm2 die would then hold about 64 

processor tiles, or a lesser number of processor tiles and some DRAM tiles. 

Since large-scale computations may require more computation power 

than what is contained in a single processing tile, we cluster four processor tiles 

together into a “quad” and provide a low-overhead, intra-quad, interconnection 

network. Grouping the tiles into quads also makes the global interconnection 

network more efficient by reducing the number of global network interfaces 

and thus the number of hops between processors. 

Our goal in the tile design is to create a set of components that will span 

as wide an application set as possible. In current architectures, computational 

elements are somewhat standardized; today, most processors have multiple 

segmented functional units to increase efficiency when working on limited 

precision numbers. Since much work has already been done on optimizing the 

mix of functional units for a wide application class, we instead focused our 

efforts on creating the flexibility needed to efficiently support different 

computational models. This requires creating a flexible memory system, 

flexible interconnection between the processing node and the memory, and 

flexible instruction decode. 
 
 

 
3. TILE ARCHITECTURE 
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A Smart Memories tile consists of a reconfigurable memory system; a 

crossbar interconnection network; a processor core; and a quad network
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interface (Figure 2). To balance computation, communication, and storage, we 

allocated equal portions of the tile to the processor, interconnect, and memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.1 Memory System 

The memory system is of growing importance in processor design. 

Different applications have different memory access patterns and thus require 

different memory configurations to optimize performance. Often these different 

memory structures require different control logic and status bits. Therefore, a 

memory system that can be configured to closely match the application 

demands is desirable. A recent study of SRAM design shows that the optimal 

block size for building large SRAMs is small, around a few KB. Large SRAMs are 

then made up of many of these smaller SRAM blocks. We leverage this naturally 

hierarchical design to provide low overhead reconfigurability. The basic 

memory mat size of 8KB is chosen based on a study of decoder and I/O 

overheads and an architectural study of the smallest memory granularity 

needed. Allocating a third of the tile area to memory allows for 16 independent 

8KB memory mats, a total of 128KB per tile. Each mat is a 1024x64b logical 

memory array that can perform reads, writes, compares, and read-modify- 

writes. All operations are byte-maskable. 
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address and data paths. In the address path, the mats take in a 10-bit address
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and a 4-bit opcode to determine what operation is to be performed. The opcode 

is decoded using a reconfigurable logic block that is set up during the hardware 

configuration. The memory address decoder can use the address input directly 

or can be set in auto-increment/decrement streaming mode. In this mode, the 

mat stores the starting index, stream count, and stride. On each streaming 

mode request, the mat accesses the next word of the stream until reaching the 

end of the stream. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In the data path, each 64-bit word is associated with a valid bit and a 4- 

bit configurable control field. These bits can be used for storing data state such 

as cache LRU or coherence bits. They are dual ported to allow read-modify- 

write operations each cycle and can be flash cleared via special opcodes. Each 

mat has a write buffer to support pipelined writes and to enable conditional 

write operations (e.g. in the case of a cache write). Mats also contain logic in the 

output read path for comparisons, so they can be used as cache tag memory. 

For complex memory structures that need multiple accesses to the 

same data (e.g. snooping on the cache tags in a multiprocessor), four of the 

mats are fully dual-ported. Many applications and architectures also need fully- 
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Therefore, the tile memory system also contains a 64-entry content- 

addressable memory (CAM). 

The Smart Memories mats can be configured to implement a wide 

variety of caches, from simple, single- ported, direct-mapped structures to set- 

associative, multi-banked designs. Figure 4 gives an example of four memory 

mats configured as a two-way set associative cache with two of the mats acting 

as the tag memories and two other mats acting as the data memories. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The mats can also be configured as local scratchpad memories or as 

vector/stream register files. These simpler configurations have higher 

efficiency and can support higher total memory bandwidth at a lower energy 

cost per access. Associated with the memory, but located in the two load-store 

units of the processor, are direct-memory access (DMA) engines that generate 

memory requests to the quad and global interconnection networks. When the 

memory mats are configured as caches, the DMA engines generate cache 

fill/spill requests. When the mats are configured for streaming or vector 

memories, the DMA engines generate the needed gather/scatter requests to fill 

the memory with the desired data. 

3.2 Interconnect 
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interface port, the tile contains a dynamically routed crossbar, which supports
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up to 8 concurrent references. The processor and quad interface generate 

requests for data, and the quad interface and memories service those requests. 

The crossbar does not interconnect different units of the same type (e.g. 

memory mat to memory mat communication is not supported in the crossbar). 

Requests through the crossbar contain a tag indicating the desired 

destination port and an index into the memory or unit attached to that port. 

The crossbar protocol always returns data back to the requestor, so data replies 

can be scheduled at the time of routing the forward-going request. Requests 

can be broadcast to multiple mats via wildcards, but only one data reply is 

allowed. The requests and replies are all pipelined, allowing a requestor to 

issue a new request every cycle. Arbitration is performed among the processor 

and quad interface ports since multiple requests for the same mat or quad 

interface port may occur. No arbitration is necessary on the return crossbar 

routes, since they are simply delayed versions of the forward crossbar routes. 

From circuit-level models of the crossbar and the memories, the 

estimated latency for a memory request is 2 processor clock cycles. About half 

of the time is spent in the crossbar, and the other half is spent in the memory 

mat. We project that our processor core will have a clock cycle of 20 fanout-of- 

four inverter delays (FO4s), which is comparable to moderately aggressive 

current processor designs. In a commodity 0.1m process, a 20 FO4 cycle time 

is equivalent to a 1GHz operating frequency. 

The quad interconnection network, shown in Figure 5, connects the 

four tiles in a quad together. The network consists of 9 64-bit multicast buses 

on which any of the 4 tiles or the global network can send or receive data. 

These buses may also be configured as halfword buses. In addition to these 

buses, a small number of control bits are broadcast to update state, atomically 

stall the processors, and arbitrate for the buses. The quad interface on each tile 

connects the internal tile crossbar to the quad network, thus mediating all 
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3.3 Processor 

The processor portion of a Smart Memories tile is a 64-bit processing 

engine with reconfigurable instruction format/decode. The computation 

resources of the tile consist of two integer clusters and one floating point (FP) 

cluster. The arrangement of these units and the FP cluster unit mix are shown 

in Figure 6. Each integer cluster consists of an ALU, register file, and load/store 

unit. This arithmetic unit mix reflects a trade-off between the resources needed 

for a wide range of applications and the area constraints of the Smart Memories 

tile. Like current media processors, all 64-bit FP arithmetic units can also 

perform the corresponding integer operations and all but the divide/sqrt unit 

performs sub word arithmetic. 

The high operand bandwidth needed in the FP cluster to sustain 

parallel issue of operations to all functional units is provided by local register 

files (LRFs) directly feeding the functional units and a shared register file with 

two read and one write ports. The LRF structure provides the necessary 

bandwidth more efficiently in terms of area, power, and access time compared 

to increasing the number of ports to the shared register file. The shared FP 
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constants. A network of result and operand buses transfers data among 

functional units and the register files. 

Optimal utilization of these resources requires that the instruction 

bandwidth be tailored to the application needs. When ILP is abundant, wide 

encoding explicitly express parallelism and enhance performance without 

significantly degrading code density. When ILP is limited, narrow instructions 

yield dense encoding without a loss in performance. The Smart Memories 

instruction path, shown at the block level in Figure 7, can be configured to 

efficiently sup-port wide or narrow instruction encoding. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 256-bit micro code instruction format achieves the highest utilization 

of resources. In this configuration, the processor issues operations to all 
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processing kernels that have high compute requirements and contain loops that 

can be unrolled to extract ample parallelism. For applications that contain ILP 

but are less regular, a VLIW instruction format that packs three instructions in 

a 128-bit packet is supported. This instruction format provides a compromise 

that achieves higher code density but less parallelism than the micro code, yet 

higher parallelism but less code density than narrow instructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Finally, a 32-bit RISC-style instruction set is available for applications 

that do not exhibit much ILP. To extract thread-level parallel-ism of such 

applications, each tile can sustain two concurrent, independent threads. The 

two threads on a tile are asymmetric. The primary thread may perform integer 

or FP computations and can issue up to two instructions per cycle, while the 

secondary thread is limited to integer operations at single-issue. The secondary 

thread is intended for light-duty tasks or for system-level support functions. 

For example, lower communication costs on systems with multiple processing 

nodes on a chip permit dynamic data and task migration to improve locality 

and load balance at a much finer grain than is practical in conventional multi- 

processors. The increased communication volume and resource usage tracking 

for such operations can easily be delegated to the secondary thread. The two 

threads are assumed to be independent and any communication must be 

explicitly synchronized.
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For managing interaction with the memory mats and quad interface, 

the tile processor has two load/store units, each with its own DMA engine. The 

load/store units, the functional units, and the instruction decode share the 8 

processor ports into tile crossbar for communicating with the memory mats 

and quad interface. 
 
 
 
 
 

4. MAPPING STREAMING & SPECULATIVE ARCHITECTURES 
 
 

One of the goals of the Smart Memories architecture is to efficiently 

execute applications with a wide range of programming models and types of 

parallelism. In the early stages of the project, we could not feasibly create, 

analyze, and map a large number of applications directly onto our architecture, 

yet we needed to evaluate its potential to span disparate applications classes. 

Clearly the memory system was general enough to allow changing the sizes and 

characteristics of the caches in the system as well as to implement other 

memory structures. However, this is really only part of what we need to 

support different computation models. To provide some concrete benchmarks, 

we configured a Smart Memories machine to mimic two existing machines, the 

Hydra multiprocessor and the Imagine streaming processor. These two 

machines, on far ends of the architectural spectrum, require very different 

memory systems and arrangement of compute resources. We then used 

applications for these base machines to provide feedback on the potential 

performance of Smart Memories. These results are likely to be pessimistic since 

the applications were optimized for the existing architecture machine and not 

for the Smart Memories target machine. 

Imagine is a highly tuned SIMD/vector machine optimized for media 

applications with large amounts of data parallelism. In these machines, local 
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performance of Hydra, a single chip 4- way multiprocessor. This machine is 

very different from Imagine, because the applications that it supports have 

irregular accesses and communication patterns. To improve performance of 

these applications the machine supports speculative thread execution. This 

requires a number of special memory structures and tests the flexibility of the 

memory system. 

4.1 Mapping Imagine 
Imagine  is  a  co-processor  optimized  for  high-performance  on 

applications that can be effectively encapsulated in a stream-programming 

model. This model expresses an application as a sequence of kernels that 

operate on long vectors of records, referred to as streams. Streams are typically 

accessed in predictable patterns and are tolerant of fetch latency. However, 

streaming applications demand high bandwidth to stream data and are 

compute-intensive. Imagine provides a bandwidth hierarchy and a large 

number of arithmetic units to meet these requirements. 

The Imagine bandwidth hierarchy consists of off-chip DRAM, an on- 

chip stream register file (SRF), and local register files (LRFs) in the data path. 

The SRF and LRFs provide increasing bandwidth and allow temporary storage, 

resulting in reduced bandwidth demands on the levels further away in the 

hierarchy. The SRF is a 64KB multi-banked SRAM accessed via a single wide 

port. Streams are stored in the SRF in the order they will be accessed, yielding 

high bandwidth via the single port. The records of a stream are interleaved 

among the banks of the SRF. The LRF level consists of many small register files 

directly feeding the arithmetic units. 

The high stream bandwidth achieved through the storage hierarchy 

enables parallel computation on a large number of arithmetic units. In Imagine, 

these units are arranged into eight clusters, each associated with a bank of the 

SRF. Arithmetic resources of a cluster are made up of three adders, two 
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stream in parallel. Within each cluster, ILP is exploited to perform parallel 

computations on the different units. All the clusters execute a single micro-code 

instruction stream in lock-step, resulting in a single-instruction multiple-data 

(SIMD) system. 

For this study, we map the SRF and LRF levels of Imagine along with its 

compute resources to the Smart Memories substrate. The arrangement of these 

resources in Imagine is shown in Figure 8. The LRFs are embedded in the 

compute clusters and are not shown explicitly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The 8-cluster Imagine is mapped to a 4-tile Smart Memories quad. 

Exploiting the SIMD execution of Imagine clusters, each of the 64- bit Smart 

Memories datapaths emulate two 32-bit Imagine clusters in parallel. Like 

Imagine, the mapped implementation is intended to be a co-processor under 

the control of an off-quad host. In the following sections, we describe the 

mapping of Imagine to the Smart Memories, the differences between the 

mapping and Imagine, and the impact on performance. 

4.1.1 Mapping the bandwidth hierarchy 
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In mapping Imagine to Smart Memories, we configure all the memory 

mats on the tiles as streaming and scratchpad memories. Most of the mats are
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allocated to the SRF and are configured in streaming mode as described in 

Section 3.1. Data structures that cannot be streamed, such as lookup tables, are 

allocated in mats configured as scratchpad memories. Instructions are stored in 

mats with the decoders configured for explicit indexed addressing. The 

homogeneity of the Smart Memories memory structure allows the allocation of 

resources to the SRF and scratchpad to be determined based on the capacity 

and bandwidth equirements of each on a per-application basis. The LRFs of 

Imagine map to the almost identical LRF structure of the Smart Memories 

datapath. 

The SRF is physically distributed over the four tiles of a quad, with a 

total SRF capacity of up to 480KB. Records of a stream are inter-leaved among 

the tiles, each active stream occupying the same mat on every one of the four 

tiles, and different streams occupying different mats. Multiple streams may be 

placed on non-overlapping address ranges of the same mat at the cost of 

reduced bandwidth to each stream. This placement allows accesses to a mat to 

be sequential and accesses to different streams to proceed in parallel. The peak 

bandwidth available at each level of the hierarchy in Imagine and the mapping 

is summarized in Table 1. The mapping can sustain bandwidth per functional 

unit comparable to Imagine at both the SRF and LRF levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.2 Mapping the computation 
In the Smart Memories datapath, the majority of computations are 
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performed in the FP cluster where the bandwidth to sustain parallel 

computation is provided by the LRFs and result buses. Microcode instructions
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are used to issue operations to all FP units in parallel. The integer units of 

Smart Memories tiles are used primarily to per-form support functions such as 

scratchpad accesses, inter-tile communication, and control flow operations, 

which are handled by dedicated units in Imagine. 

4.1.3 Mapping off-tile communication 

Much of the data bandwidth required in stream computations is to local 

tile memory. However, data dependencies across loop iterations require 

communication among  tiles within the quad. In the  mapping,  these 

communications take place over the quad network. Since we emulate two 32- 

bit Imagine clusters on a tile, the quad network is configured as a half-word 

network to allow any communication pattern among the eight mapped clusters 

without incurring a serialization penalty. 

Streams that generate or consume data based on run-time conditions 

require dynamic communication to distribute records among all or a subset of 

the compute clusters. The communication pattern for these dynamic events, 

generated by dedicated hardware in Imagine, is determined by a table lookup 

in the Smart Memories mapping. The broadcast control bits in the Smart 

Memories quad network distribute status information indicating participation 

of each cluster in an upcoming communication. These bits combine with state 

information from previous communications to form the index into the lookup- 

table. 

Gather and scatter of stream data between the SRF and off-quad DRAM, 

fetch of microcode into the local store, communication with the host processor, 

and communication with other quads are performed over the global network. 

The first or final stage of these transfers also utilizes the quad network but 

receives a lower priority than intra-quad communications. 

4.1.4 Evaluation of the Imagine Mapping 

To evaluate the performance of the mapping, we conducted cycle- 

accurate simulations of four kernels by adapting the Imagine compilation and 
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Imagine and the mapping, including the hardware resource differences, the 

overheads incurred in software emulation of certain hardware functions of 

Imagine, and serialization penal-ties incurred in emulating two Imagine 

clusters on a tile. When an aspect of the mapping could not be modeled exactly 

using the Imagine tools, we modeled the worst-case scenario. Latencies of 32- 

bit arithmetic operations were assumed to be the same for both architectures 

since their cycle times are comparable in gate delays in their respective target 

technologies. The kernels simulated – a 1024-point FFT, a 13-tap FIR filter, a 

7x7 convolution, and an 8x8 DCT - were optimized for Imagine and were not re- 

optimized for the Smart Memories architecture. 

Simulations show that none of the observed kernels suffer a slow-down 

due to inadequacy of the available SRF bandwidth of four accesses per cycle. 

However, constraints other than SRF bandwidth lead to performance losses. 

Figure 9 shows the percentage performance degradation for the four kernels on 

the mapping relative to Imagine. These performance losses arise due to the 

constraints discussed below. 

Reduced unit mix 

The Smart Memories FP cluster consists of two fewer units (an adder 

and a multiplier) than an Imagine cluster, which leads to a significant 

slowdown for some compute bound kernels (e.g. convolve). Simulations show 

that simply adding a second multiplier with no increase in memory or 

communication bandwidth reduces the performance degradation relative to 

Imagine for convolve from 82% to 7%. We are currently exploring ways to 

increase the compute power of the Smart Memories tile without significantly 

increasing the area devoted to arithmetic units. 

Bandwidth constraints (within a tile) 
In the Smart Memories datapath, communication between the FP and 

integer units and memory/network ports takes place over a limited number of 
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leading to a relative slowdown for the map-ping.
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Longer latencies 
The routed, general interconnects, used for data transfers outside of 

compute clusters in the Smart Memories architecture, typically have longer 

latencies compared to the dedicated communication resources of Imagine. 

While most kernels are tolerant of stream access latencies, some that perform 

scratchpad accesses or inter-cluster communications are sensitive to the 

latency of these operations (e.g. fir). However, heavy communication does not 

necessarily lead to significant slowdowns if the latency can be masked through 

proper scheduling (e.g. fft). Other causes of latency increases include the 

overheads of emulating certain functions in software in the mapping, and 

serialization delays due to emulating two clusters on a single tile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
According to simulation results, the bandwidth hierarchy of the 

mapping compares well with that of the original Imagine and pro-vides the 

necessary bandwidth. However, constraints primarily in the compute engines 

and communication resources lead to an over-all performance loss. The 

increase in run-time over Imagine is moderate: 

47% on average and within a factor of two for all the kernels considered. These 

results demonstrate that the configurable substrate of Smart Memories, 

particularly the memory system, can sustain performance within a small factor 
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4.2 Mapping Hydra 
The Hydra speculative multiprocessor enables code from a sequential 

machine to be run on a parallel machine without requiring the code to be re- 

written. A pre-processing script finds and marks loops in the original code. At 

run-time, different loop iterations from the marked loops are then speculatively 

distributed across all processors. 

The Hydra multiprocessor hardware controls data dependencies across 

multiple threads at run-time, thereby relaxing the burden on the compiler and 

permitting more aggressive parallelization. As shown in Figure 10, the Hydra 

multiprocessor consists of four RISC processors, a shared on-die L2, and 

speculative buffers, which are interconnected by a 256-bit, read bus and a 64- 

bit write-through bus. The speculative buffers store writes made by a processor 

during speculative operation to prevent potentially invalid data from 

corrupting the L2. When a processor commits state, this modified data is 

written to the L2. The read bus handles L2 accesses and fills from the external 

memory interface while the write-through bus is used to implement a simple 

cache-coherence scheme. All processors snoop on the write-through bus for 

potential RAW violations and other speculative hazards.
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When a speculative processor receives a less-speculative write to a 

memory address that it has read (RAW hazard), a handler invalidates modified 

lines in its cache, restarts its loop iteration, and notifies all more-speculative 

processors that they must also restart. When the head (non-speculative) 

processor commits, it begins work on thread four loop iterations from its 

current position and notifies all speculative processors that they must update 

their speculative rank. 

During the course of mapping Hydra we found that performance 

degradation was introduced through three factors: memory configuration 

limitations, algorithmic simplifications, and increases in memory access time. 

Similar to the approach taken with Imagine, we conducted cycle-level 

simulations by adapting the Hydra simulation environment to reflect the Smart 

Memories tile and quad architecture. 
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4.2.1 Memory configuration
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In the Smart Memories implementation of Hydra, each Hydra processor 

and its associated L1 caches reside on a tile. The L2 cache and speculative write 

buffers are distributed among the four tiles that form a quad. Figure 11 shows 

the memory mat allocation of a single tile. The dual-ported mats are used to 

support three types of memory structures: efficient set-associative tags, tags 

that support snooping, and arbitration-simplifying mats. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
One quarter of the L2 resides on each tile. The L2 is split by address, so 

a portion of each way is on each tile. Rather than dedicate two mats, one for 

each way, for the L2 tags, a single dual-ported mat is used. Placing both ways on 

the same tile reduces the communication overhead. Single-ported memories 

may be efficiently used as tag mats for large caches, but they inefficiently 

implement tags for small caches. For example, the L1 data tags are not 

completely utilized because the tags only fill 2KB. The L1 data tags are dual- 

ported to facilitate snooping on the write bus under the write-through 

coherence protocol. 

Finally, dual-ported mats are used to simplify arbitration between two 

requestors. The CAM (not shown) stores indices, which point into the 

speculation buffer mat, which holds data created by a speculative thread. Data 

may be written to this mat by the tile’s processor and then read by a more 

speculative processor on an L1 miss at the same time. In this case, the dual- 

ported mat avoids complex buffering and arbitration schemes by allowing both 
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requestors to simultaneously access the mat.



www.studymafia.org   
 

 

 
 
 
 

 
Smart Memories 

 
 
 
 

 

22 
 

The Smart Memories memory mats architecture causes certain aspects 

of the mapping’s memory configuration to differ from those of the Hydra 

baseline [36], as detailed in Table 2. Compared to Hydra, the Smart Memories 

configuration uses lower set-associativity in the L2 and L1 instruction caches to 

maximize the memory mat utilization. The performance degradation due to 

lower associativity is at most 6% as shown in Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.2.2 Algorithmic modifications 

Algorithmic modifications were necessary, since certain Hydra-specific 

hardware structures were not available. This section presents two examples 

and their performance impact. 

Conditional gang-invalidation 

On a restart, Hydra removes speculatively modified cache lines in 

parallel through a conditional gang-invalidation if the appropriate control bit of 

the line is set. This mechanism keeps unmodified lines in the cache as opposed 

to clearing the entire cache, thus improving the L1 hit rate. Although the 

conditional gang-invalidation mechanism is found in other speculative 

architectures, such as the Speculative Versioning Cache [37], it is not commonly 

used in other architectures and introduces additional transistors to the SRAM 

memory cell. Therefore, in the Smart Memories mapping, algorithmic 
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modifications are made so the control bits in the L1 tag are not conditionally 

gang-invalidated.
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Under Hydra’s conditional gang-invalidation scheme, lines introduced 

during speculation are marked as valid lines and are invalidated when a thread 

restarts. In the Smart Memories configuration, lines introduced during 

speculation are valid for a specified time period and are only permanently 

marked valid if they are accessed before the processor’s next assigned thread 

commits. Simulations show that this  alternative to  conditional gang- 

invalidation decreases performance by up to 12% and requires two extra bits 

in the tag. 

L2 Merge 

In Hydra, the L2 and speculative buffers are centrally located, and on an 

L1 miss, a hardware priority encoder returns a merged line. Data is collected 

from the L2 and less speculative buffers on a word-by-word basis where the 

more recent data has priority. However, in Smart Memories the L2 and 

speculative buffers are distributed. If a full merge of all less-speculative buffers 

and the L2 is performed, a large amount of data is unnecessarily broadcast 

across the quad network. 

Simulations show that most of the data comes from either the L2 or the 

nearest less-speculative processor on an L1 miss. Therefore, the L2 merge 

bandwidth is reduced by only reading data from the L2 and the nearest less- 

speculative processor’s speculative write buffer. Neglecting the different L2 

latency under the Smart Memories memory system leads to a performance 

degradation of up to 25%. The performance degradation is caused by a small 

number of threads, which are restarted when they read the incorrect data on an 

L2 access. 

4.2.3 Access Times 

The memory access times in the Smart Memories mapping are larger 

due to two factors: crossbar delay and delay due to distributed resources. 

Hydra has a 1-cycle L1 access and a 4-cycle L2 merge, while the Smart 
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Memories configuration has a 2-cycle L1 access and 7-cycle L2 merge. The 

delay through the crossbar affects the L1 access time, and since the L2 is
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distributed, the L2 merge time is increased. The 2-cycle load delay slot is 

conservatively modeled in our simulations by inserting nops without code 

rescheduling; the resulting performance degradation is up to 14%. 

The increased L2 access time has a greater impact on performance than 

the L1 access time and causes performance degradations greater than 40% on 

the m88ksim and wc benchmarks. The performance degradations on the other 

benchmarks are less than 25%. The increase in the L2 access time is due to the 

additional nearest-neighbor access on the quad interconnects. 

4.2.4 Simulation results 

Figure 12 shows the performance degradations caused by the choice of 

memory configurations, algorithms, and memory access latency. The memory 

access latency and algorithmic changes con-tribute the greatest amount of 

performance degradation, whereas the configuration changes are relatively 

insignificant. Since the Hydra processors pass data through the L2, the 

increased L2 latency in Smart Memories damages performance the most for 

benchmarks that have large amounts of communication between loop 

iterations, such as compress, m88ksim, and wc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Figure 13, the Smart Memories and Hydra speedups are calculated 

by dividing the execution time of one of the processors in Hydra by the 
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respective execution times of the Smart Memories and Hydra architectures.
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Scalar  benchmarks,  m88ksim  and  wc,  have  the  largest  performance 

degradations and may actually slow down under the Smart Memories 

configuration. Since Hydra does not achieve significant speedup on these 

benchmarks, they should not be run on this configuration of Smart Memories. 

For example, we would achieve higher performance on the wc benchmark if we 

devoted more tile memory to a larger L1 cache. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5. CONCLUSION 

Continued technology scaling causes a dilemma -- while computation 

gets cheaper, the design of computing devices becomes more expensive, so new 

computing devices must have large markets to be successful. Smart Memories 

addresses this issue by extending the notion of a program. In conventional 

computing systems the memories and interconnect between the processors 

and memories is fixed, and what the programmer modifies is the code that runs 

on the processor. While this model is completely general, for many applications 

it is not very efficient. In Smart Memories, the user can program the wires and 

the memory, as well as the processors. This allows the user to configure the 

computing substrate to better match the structure of the applications, which 

greatly increases the efficiency of the resulting solution. 
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The initial tile architecture shows the potential of this approach. Using 

the same resources normally found in a super scalar processor, we were able to
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arrange those resources into two very different types of compute engines. One 

is optimized for stream-based applications, i.e. very regular applications with 

large amounts of data parallelism. In this machine organization, the tile 

provides very high bandwidth and high computational throughput. The other 

engine was optimized for applications with small amounts of parallelism and 

irregular memory access patterns. Here the programmability of the memory 

was used to create the specialized memory structures needed to support 

speculation. 

However, this flexibility comes at a cost. The overheads of the coarse- 

grain configuration that Smart Memories uses, although modest, are not 

negligible; and as the mapping studies show, building a machine optimized for a 

specific application will always be faster than configuring a general machine for 

that task. Yet the results are promising, since the overheads and resulting 

difference in performance are not large. So if an application or set of 

applications needs more than one computing or memory model, our 

reconfigurable architecture can exceed the efficiency and performance of 

existing separate solutions. Our next step is to create a more complete 

simulation environment to look at the overall performance of some complete 

applications and to investigate the architecture for inter-tile interactions. 
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