
www.studymafia.org

A

Seminar report

On

Smart Memories
Submitted in partial fulfillment of the requirement for the award of degree

of Bachelor of Technology in Computer Science

 SUBMITTED TO: SUBMITTED BY:

 www.studymafia.org www.studymafia.org

www.studymafia.org

Acknowledgement

 I would like to thank respected Mr…….. and Mr. ……..for giving me such a

wonderful opportunity to expand my knowledge for my own branch and giving me

guidelines to present a seminar report. It helped me a lot to realize of what we study for.

Secondly, I would like to thank my parents who patiently helped me as i went through my

work and helped to modify and eliminate some of the irrelevant or un-necessary stuffs.

Thirdly, I would like to thank my friends who helped me to make my work more organized

and well-stacked till the end.

Next, I would thank Microsoft for developing such a wonderful tool like MS Word. It helped

my work a lot to remain error-free.

Last but clearly not the least, I would thank The Almighty for giving me strength to complete

my report on time.

www.studymafia.org

Preface

I have made this report file on the topic Smart Memories; I have tried my best to elucidate
all the relevant detail to the topic to be included in the report. While in the beginning I have
tried to give a general view about this topic.
My efforts and wholehearted co-corporation of each and everyone has ended on a

successful note. I express my sincere gratitude to …………..who assisting me throughout

the preparation of this topic. I thank him for providing me the reinforcement, confidence

and most importantly the track for the topic whenever I needed it.

www.studymafia.org

1.

INTRODUCTION

The continued scaling of integrated circuit fabrication technology will

dramatically affect the architecture of future computing systems. Scaling will

make computation cheaper, smaller, and lower power, thus enabling more

sophisticated computation in a growing number of embedded applications. This

spread of low-cost, low power computing can easily be seen in today’s wired

(e.g. gigabit Ethernet or DSL) and wireless communication devices, gaming

consoles, and handheld PDAs. These new applications have different

characteristics from today’s standard workloads, often containing highly data-

parallel streaming behavio4r. While the applications will demand ever-growing

compute performance, power (ops/W) and computational efficiency (ops/$)

are also paramount; therefore, designers have created narrowly focused

custom silicon solutions to meet these needs.

However, the scaling of process technologies makes the construction of

custom solutions increasingly difficult due to the increasing complexity of the

desired devices. While designer productivity has improved over time, and

technologies like system-on-a-chip help to manage complexity, each generation

of complex machines is more expensive to design than the previous one. High

non-recurring fabrication costs (e.g. mask generation) and long chip

manufacturing delays mean that designs must be all the more carefully

validated, further increasing the design costs. Thus, these large complex chips

are only cost-effective if they can be sold in large volumes. This need for a large

market runs counter to the drive for efficient, narrowly- focused, custom

hardware solutions.

To fill the need for widely applicable computing designs, a number of

more general-purpose processors are targeted at a class of problems, rather

than at specific applications. Tri-media, Equator, Mpact, IRAM, and many other

projects are all attempts to create general purpose computing engine for multi-

www.studymafia.org

Smart Memories

2

media applications. However, these attempts to create more universal

computing elements have some limitations. First, these machines have been

optimized for applications where the parallelism can be expressed at the

instruction level using either VLIW or vector engines. However, they would not

be very efficient for applications that lacked parallelism at this level, but had,

for example, thread level parallelism. Second, their globally shared resource

models (shared multi-ported registers and memory) will be increasingly

difficult to implement in future technologies in which on-chip communication

costs are appreciable. Finally, since these machines are generally compromise

solutions between true signal processing engines and general-purpose

processors, their efficiency at doing either task suffers.

On the other hand, the need for scalable architectures has also led to

proposals for modular, explicitly parallel architectures that typically consist of

a number of processing elements and memories on a die connected together by

a network. The modular nature of these designs ensures that wire lengths

shrink as technologies improve, allowing wire and gate delays to scale at

roughly the same rate. Additionally, the replication consumes the growing

number of transistors. The multiple processing elements take advantage of

both instruction-level and thread-level parallelism. One of the most prominent

architectures in this class is the MIT Raw project, which focuses on the

development of compiler technologies that take advantage of exposed low-level

hardware.

Smart Memories combines the benefits of both approaches to create a

partitioned, explicitly parallel, reconfigurable architecture for use as a future

universal computing element. Since different application spaces naturally have

different communication patterns and memory needs, finding a single topology

that fits well with all applications is very difficult. Rather than trying to find a

general solution for all applications, we tailor the appearance of the on-chip

www.studymafia.org

memory, interconnection network, and processing elements to better match

the application requirements. We leverage the fact that long wires in current

www.studymafia.org

Smart Memories

3

(and future) VLSI chips require active repeater insertion for minimum delay.

The presence of repeaters means that adding some reconfigurable logic to

these wires will only modestly impact their performance. Reconfiguration at

this level leads to coarser-grained configurability than previous reconfigurable

architectures, most of which were at least in part based on FPGA

implementations. Compared to these systems, Smart Memories trades away

some flexibility for lower overheads, more familiar programming models, and

higher efficiency.

2.

SMART MEMORIES OVERVIEW

At the highest level, a Smart Memories chip is a modular computer. It

contains an array of processor tiles and on-die DRAM memories connected by a

packet-based, dynamically-routed network (Figure 1). The network also

connects to high-speed links on the pins of the chip to allow for the

construction of multi-chip systems. Most of the initial hardware design works

in the Smart Memories project has been on the processor tile design and

evaluation, so this paper focuses on these aspects.

www.studymafia.org

Smart Memories

4

The organization of a processor tile is a compromise between VLSI wire

constraints and computational efficiency. Our initial goal was to make each

processor tile small enough so the delay of a repeated wire around the semi-

perimeter of the tile would be less then a clock cycle. This leads to a tile edge of

around 2.5mm in a 0.1m technology. This sized tile can contain a processor

equivalent to a MIPS R5000, a 64-bit, 2-issue, in-order machine with 64KB of

on-die cache. Alternately, this area can contain 2-4MB of embedded DRAM

depending on the assumed cell size. A 400mm2 die would then hold about 64

processor tiles, or a lesser number of processor tiles and some DRAM tiles.

Since large-scale computations may require more computation power

than what is contained in a single processing tile, we cluster four processor tiles

together into a “quad” and provide a low-overhead, intra-quad, interconnection

network. Grouping the tiles into quads also makes the global interconnection

network more efficient by reducing the number of global network interfaces

and thus the number of hops between processors.

Our goal in the tile design is to create a set of components that will span

as wide an application set as possible. In current architectures, computational

elements are somewhat standardized; today, most processors have multiple

segmented functional units to increase efficiency when working on limited

precision numbers. Since much work has already been done on optimizing the

mix of functional units for a wide application class, we instead focused our

efforts on creating the flexibility needed to efficiently support different

computational models. This requires creating a flexible memory system,

flexible interconnection between the processing node and the memory, and

flexible instruction decode.

3. TILE ARCHITECTURE

www.studymafia.org

A Smart Memories tile consists of a reconfigurable memory system; a

crossbar interconnection network; a processor core; and a quad network

www.studymafia.org

Smart Memories

5

interface (Figure 2). To balance computation, communication, and storage, we

allocated equal portions of the tile to the processor, interconnect, and memory.

3.1 Memory System

The memory system is of growing importance in processor design.

Different applications have different memory access patterns and thus require

different memory configurations to optimize performance. Often these different

memory structures require different control logic and status bits. Therefore, a

memory system that can be configured to closely match the application

demands is desirable. A recent study of SRAM design shows that the optimal

block size for building large SRAMs is small, around a few KB. Large SRAMs are

then made up of many of these smaller SRAM blocks. We leverage this naturally

hierarchical design to provide low overhead reconfigurability. The basic

memory mat size of 8KB is chosen based on a study of decoder and I/O

overheads and an architectural study of the smallest memory granularity

needed. Allocating a third of the tile area to memory allows for 16 independent

8KB memory mats, a total of 128KB per tile. Each mat is a 1024x64b logical

memory array that can perform reads, writes, compares, and read-modify-

writes. All operations are byte-maskable.

www.studymafia.org

In addition to the memory array, there is configurable logic in the

address and data paths. In the address path, the mats take in a 10-bit address

www.studymafia.org

Smart Memories

6

and a 4-bit opcode to determine what operation is to be performed. The opcode

is decoded using a reconfigurable logic block that is set up during the hardware

configuration. The memory address decoder can use the address input directly

or can be set in auto-increment/decrement streaming mode. In this mode, the

mat stores the starting index, stream count, and stride. On each streaming

mode request, the mat accesses the next word of the stream until reaching the

end of the stream.

In the data path, each 64-bit word is associated with a valid bit and a 4-

bit configurable control field. These bits can be used for storing data state such

as cache LRU or coherence bits. They are dual ported to allow read-modify-

write operations each cycle and can be flash cleared via special opcodes. Each

mat has a write buffer to support pipelined writes and to enable conditional

write operations (e.g. in the case of a cache write). Mats also contain logic in the

output read path for comparisons, so they can be used as cache tag memory.

For complex memory structures that need multiple accesses to the

same data (e.g. snooping on the cache tags in a multiprocessor), four of the

mats are fully dual-ported. Many applications and architectures also need fully-

www.studymafia.org

associative memories, which are inefficient and difficult to emulate using mats.

www.studymafia.org

Smart Memories

7

Therefore, the tile memory system also contains a 64-entry content-

addressable memory (CAM).

The Smart Memories mats can be configured to implement a wide

variety of caches, from simple, single- ported, direct-mapped structures to set-

associative, multi-banked designs. Figure 4 gives an example of four memory

mats configured as a two-way set associative cache with two of the mats acting

as the tag memories and two other mats acting as the data memories.

The mats can also be configured as local scratchpad memories or as

vector/stream register files. These simpler configurations have higher

efficiency and can support higher total memory bandwidth at a lower energy

cost per access. Associated with the memory, but located in the two load-store

units of the processor, are direct-memory access (DMA) engines that generate

memory requests to the quad and global interconnection networks. When the

memory mats are configured as caches, the DMA engines generate cache

fill/spill requests. When the mats are configured for streaming or vector

memories, the DMA engines generate the needed gather/scatter requests to fill

the memory with the desired data.

3.2 Interconnect

www.studymafia.org

To connect the different memory mats to the desired processor or quad

interface port, the tile contains a dynamically routed crossbar, which supports

www.studymafia.org

Smart Memories

8

up to 8 concurrent references. The processor and quad interface generate

requests for data, and the quad interface and memories service those requests.

The crossbar does not interconnect different units of the same type (e.g.

memory mat to memory mat communication is not supported in the crossbar).

Requests through the crossbar contain a tag indicating the desired

destination port and an index into the memory or unit attached to that port.

The crossbar protocol always returns data back to the requestor, so data replies

can be scheduled at the time of routing the forward-going request. Requests

can be broadcast to multiple mats via wildcards, but only one data reply is

allowed. The requests and replies are all pipelined, allowing a requestor to

issue a new request every cycle. Arbitration is performed among the processor

and quad interface ports since multiple requests for the same mat or quad

interface port may occur. No arbitration is necessary on the return crossbar

routes, since they are simply delayed versions of the forward crossbar routes.

From circuit-level models of the crossbar and the memories, the

estimated latency for a memory request is 2 processor clock cycles. About half

of the time is spent in the crossbar, and the other half is spent in the memory

mat. We project that our processor core will have a clock cycle of 20 fanout-of-

four inverter delays (FO4s), which is comparable to moderately aggressive

current processor designs. In a commodity 0.1m process, a 20 FO4 cycle time

is equivalent to a 1GHz operating frequency.

The quad interconnection network, shown in Figure 5, connects the

four tiles in a quad together. The network consists of 9 64-bit multicast buses

on which any of the 4 tiles or the global network can send or receive data.

These buses may also be configured as halfword buses. In addition to these

buses, a small number of control bits are broadcast to update state, atomically

stall the processors, and arbitrate for the buses. The quad interface on each tile

connects the internal tile crossbar to the quad network, thus mediating all

www.studymafia.org

communication to and from the tile.

www.studymafia.org

Smart Memories

9

3.3 Processor

The processor portion of a Smart Memories tile is a 64-bit processing

engine with reconfigurable instruction format/decode. The computation

resources of the tile consist of two integer clusters and one floating point (FP)

cluster. The arrangement of these units and the FP cluster unit mix are shown

in Figure 6. Each integer cluster consists of an ALU, register file, and load/store

unit. This arithmetic unit mix reflects a trade-off between the resources needed

for a wide range of applications and the area constraints of the Smart Memories

tile. Like current media processors, all 64-bit FP arithmetic units can also

perform the corresponding integer operations and all but the divide/sqrt unit

performs sub word arithmetic.

The high operand bandwidth needed in the FP cluster to sustain

parallel issue of operations to all functional units is provided by local register

files (LRFs) directly feeding the functional units and a shared register file with

two read and one write ports. The LRF structure provides the necessary

bandwidth more efficiently in terms of area, power, and access time compared

to increasing the number of ports to the shared register file. The shared FP

www.studymafia.org

register file provides a central register pool for LRF overflows and shared

www.studymafia.org

Smart Memories

10

constants. A network of result and operand buses transfers data among

functional units and the register files.

Optimal utilization of these resources requires that the instruction

bandwidth be tailored to the application needs. When ILP is abundant, wide

encoding explicitly express parallelism and enhance performance without

significantly degrading code density. When ILP is limited, narrow instructions

yield dense encoding without a loss in performance. The Smart Memories

instruction path, shown at the block level in Figure 7, can be configured to

efficiently sup-port wide or narrow instruction encoding.

A 256-bit micro code instruction format achieves the highest utilization

of resources. In this configuration, the processor issues operations to all

www.studymafia.org

available units in parallel and explicitly orchestrates data transfers in the data

path. This instruction format is primarily intended for media and signal

www.studymafia.org

Smart Memories

11

processing kernels that have high compute requirements and contain loops that

can be unrolled to extract ample parallelism. For applications that contain ILP

but are less regular, a VLIW instruction format that packs three instructions in

a 128-bit packet is supported. This instruction format provides a compromise

that achieves higher code density but less parallelism than the micro code, yet

higher parallelism but less code density than narrow instructions.

Finally, a 32-bit RISC-style instruction set is available for applications

that do not exhibit much ILP. To extract thread-level parallel-ism of such

applications, each tile can sustain two concurrent, independent threads. The

two threads on a tile are asymmetric. The primary thread may perform integer

or FP computations and can issue up to two instructions per cycle, while the

secondary thread is limited to integer operations at single-issue. The secondary

thread is intended for light-duty tasks or for system-level support functions.

For example, lower communication costs on systems with multiple processing

nodes on a chip permit dynamic data and task migration to improve locality

and load balance at a much finer grain than is practical in conventional multi-

processors. The increased communication volume and resource usage tracking

for such operations can easily be delegated to the secondary thread. The two

threads are assumed to be independent and any communication must be

explicitly synchronized.

www.studymafia.org

Smart Memories

12

For managing interaction with the memory mats and quad interface,

the tile processor has two load/store units, each with its own DMA engine. The

load/store units, the functional units, and the instruction decode share the 8

processor ports into tile crossbar for communicating with the memory mats

and quad interface.

4. MAPPING STREAMING & SPECULATIVE ARCHITECTURES

One of the goals of the Smart Memories architecture is to efficiently

execute applications with a wide range of programming models and types of

parallelism. In the early stages of the project, we could not feasibly create,

analyze, and map a large number of applications directly onto our architecture,

yet we needed to evaluate its potential to span disparate applications classes.

Clearly the memory system was general enough to allow changing the sizes and

characteristics of the caches in the system as well as to implement other

memory structures. However, this is really only part of what we need to

support different computation models. To provide some concrete benchmarks,

we configured a Smart Memories machine to mimic two existing machines, the

Hydra multiprocessor and the Imagine streaming processor. These two

machines, on far ends of the architectural spectrum, require very different

memory systems and arrangement of compute resources. We then used

applications for these base machines to provide feedback on the potential

performance of Smart Memories. These results are likely to be pessimistic since

the applications were optimized for the existing architecture machine and not

for the Smart Memories target machine.

Imagine is a highly tuned SIMD/vector machine optimized for media

applications with large amounts of data parallelism. In these machines, local

www.studymafia.org

memory access is very regular, and computation is almost completely

scheduled by the compiler. After looking at Imagine, we will explore the

www.studymafia.org

Smart Memories

13

performance of Hydra, a single chip 4- way multiprocessor. This machine is

very different from Imagine, because the applications that it supports have

irregular accesses and communication patterns. To improve performance of

these applications the machine supports speculative thread execution. This

requires a number of special memory structures and tests the flexibility of the

memory system.

4.1 Mapping Imagine
Imagine is a co-processor optimized for high-performance on

applications that can be effectively encapsulated in a stream-programming

model. This model expresses an application as a sequence of kernels that

operate on long vectors of records, referred to as streams. Streams are typically

accessed in predictable patterns and are tolerant of fetch latency. However,

streaming applications demand high bandwidth to stream data and are

compute-intensive. Imagine provides a bandwidth hierarchy and a large

number of arithmetic units to meet these requirements.

The Imagine bandwidth hierarchy consists of off-chip DRAM, an on-

chip stream register file (SRF), and local register files (LRFs) in the data path.

The SRF and LRFs provide increasing bandwidth and allow temporary storage,

resulting in reduced bandwidth demands on the levels further away in the

hierarchy. The SRF is a 64KB multi-banked SRAM accessed via a single wide

port. Streams are stored in the SRF in the order they will be accessed, yielding

high bandwidth via the single port. The records of a stream are interleaved

among the banks of the SRF. The LRF level consists of many small register files

directly feeding the arithmetic units.

The high stream bandwidth achieved through the storage hierarchy

enables parallel computation on a large number of arithmetic units. In Imagine,

these units are arranged into eight clusters, each associated with a bank of the

SRF. Arithmetic resources of a cluster are made up of three adders, two

www.studymafia.org

multipliers, and one divide/square-root unit. The eight clusters exploit data

parallelism to perform the same set of operations on different records of a

www.studymafia.org

Smart Memories

14

stream in parallel. Within each cluster, ILP is exploited to perform parallel

computations on the different units. All the clusters execute a single micro-code

instruction stream in lock-step, resulting in a single-instruction multiple-data

(SIMD) system.

For this study, we map the SRF and LRF levels of Imagine along with its

compute resources to the Smart Memories substrate. The arrangement of these

resources in Imagine is shown in Figure 8. The LRFs are embedded in the

compute clusters and are not shown explicitly.

The 8-cluster Imagine is mapped to a 4-tile Smart Memories quad.

Exploiting the SIMD execution of Imagine clusters, each of the 64- bit Smart

Memories datapaths emulate two 32-bit Imagine clusters in parallel. Like

Imagine, the mapped implementation is intended to be a co-processor under

the control of an off-quad host. In the following sections, we describe the

mapping of Imagine to the Smart Memories, the differences between the

mapping and Imagine, and the impact on performance.

4.1.1 Mapping the bandwidth hierarchy

www.studymafia.org

In mapping Imagine to Smart Memories, we configure all the memory

mats on the tiles as streaming and scratchpad memories. Most of the mats are

www.studymafia.org

Smart Memories

15

allocated to the SRF and are configured in streaming mode as described in

Section 3.1. Data structures that cannot be streamed, such as lookup tables, are

allocated in mats configured as scratchpad memories. Instructions are stored in

mats with the decoders configured for explicit indexed addressing. The

homogeneity of the Smart Memories memory structure allows the allocation of

resources to the SRF and scratchpad to be determined based on the capacity

and bandwidth equirements of each on a per-application basis. The LRFs of

Imagine map to the almost identical LRF structure of the Smart Memories

datapath.

The SRF is physically distributed over the four tiles of a quad, with a

total SRF capacity of up to 480KB. Records of a stream are inter-leaved among

the tiles, each active stream occupying the same mat on every one of the four

tiles, and different streams occupying different mats. Multiple streams may be

placed on non-overlapping address ranges of the same mat at the cost of

reduced bandwidth to each stream. This placement allows accesses to a mat to

be sequential and accesses to different streams to proceed in parallel. The peak

bandwidth available at each level of the hierarchy in Imagine and the mapping

is summarized in Table 1. The mapping can sustain bandwidth per functional

unit comparable to Imagine at both the SRF and LRF levels.

4.1.2 Mapping the computation
In the Smart Memories datapath, the majority of computations are

www.studymafia.org

performed in the FP cluster where the bandwidth to sustain parallel

computation is provided by the LRFs and result buses. Microcode instructions

www.studymafia.org

Smart Memories

16

are used to issue operations to all FP units in parallel. The integer units of

Smart Memories tiles are used primarily to per-form support functions such as

scratchpad accesses, inter-tile communication, and control flow operations,

which are handled by dedicated units in Imagine.

4.1.3 Mapping off-tile communication

Much of the data bandwidth required in stream computations is to local

tile memory. However, data dependencies across loop iterations require

communication among tiles within the quad. In the mapping, these

communications take place over the quad network. Since we emulate two 32-

bit Imagine clusters on a tile, the quad network is configured as a half-word

network to allow any communication pattern among the eight mapped clusters

without incurring a serialization penalty.

Streams that generate or consume data based on run-time conditions

require dynamic communication to distribute records among all or a subset of

the compute clusters. The communication pattern for these dynamic events,

generated by dedicated hardware in Imagine, is determined by a table lookup

in the Smart Memories mapping. The broadcast control bits in the Smart

Memories quad network distribute status information indicating participation

of each cluster in an upcoming communication. These bits combine with state

information from previous communications to form the index into the lookup-

table.

Gather and scatter of stream data between the SRF and off-quad DRAM,

fetch of microcode into the local store, communication with the host processor,

and communication with other quads are performed over the global network.

The first or final stage of these transfers also utilizes the quad network but

receives a lower priority than intra-quad communications.

4.1.4 Evaluation of the Imagine Mapping

To evaluate the performance of the mapping, we conducted cycle-

accurate simulations of four kernels by adapting the Imagine compilation and

www.studymafia.org

simulation tools. The simulations accounted for all differences between

www.studymafia.org

Smart Memories

17

Imagine and the mapping, including the hardware resource differences, the

overheads incurred in software emulation of certain hardware functions of

Imagine, and serialization penal-ties incurred in emulating two Imagine

clusters on a tile. When an aspect of the mapping could not be modeled exactly

using the Imagine tools, we modeled the worst-case scenario. Latencies of 32-

bit arithmetic operations were assumed to be the same for both architectures

since their cycle times are comparable in gate delays in their respective target

technologies. The kernels simulated – a 1024-point FFT, a 13-tap FIR filter, a

7x7 convolution, and an 8x8 DCT - were optimized for Imagine and were not re-

optimized for the Smart Memories architecture.

Simulations show that none of the observed kernels suffer a slow-down

due to inadequacy of the available SRF bandwidth of four accesses per cycle.

However, constraints other than SRF bandwidth lead to performance losses.

Figure 9 shows the percentage performance degradation for the four kernels on

the mapping relative to Imagine. These performance losses arise due to the

constraints discussed below.

Reduced unit mix

The Smart Memories FP cluster consists of two fewer units (an adder

and a multiplier) than an Imagine cluster, which leads to a significant

slowdown for some compute bound kernels (e.g. convolve). Simulations show

that simply adding a second multiplier with no increase in memory or

communication bandwidth reduces the performance degradation relative to

Imagine for convolve from 82% to 7%. We are currently exploring ways to

increase the compute power of the Smart Memories tile without significantly

increasing the area devoted to arithmetic units.

Bandwidth constraints (within a tile)
In the Smart Memories datapath, communication between the FP and

integer units and memory/network ports takes place over a limited number of

www.studymafia.org

buses. This contrasts with a full crossbar in Imagine for the same purpose,

leading to a relative slowdown for the map-ping.

www.studymafia.org

Smart Memories

18

Longer latencies
The routed, general interconnects, used for data transfers outside of

compute clusters in the Smart Memories architecture, typically have longer

latencies compared to the dedicated communication resources of Imagine.

While most kernels are tolerant of stream access latencies, some that perform

scratchpad accesses or inter-cluster communications are sensitive to the

latency of these operations (e.g. fir). However, heavy communication does not

necessarily lead to significant slowdowns if the latency can be masked through

proper scheduling (e.g. fft). Other causes of latency increases include the

overheads of emulating certain functions in software in the mapping, and

serialization delays due to emulating two clusters on a single tile.

According to simulation results, the bandwidth hierarchy of the

mapping compares well with that of the original Imagine and pro-vides the

necessary bandwidth. However, constraints primarily in the compute engines

and communication resources lead to an over-all performance loss. The

increase in run-time over Imagine is moderate:

47% on average and within a factor of two for all the kernels considered. These

results demonstrate that the configurable substrate of Smart Memories,

particularly the memory system, can sustain performance within a small factor

www.studymafia.org

of what a specialized streaming processor achieves.

www.studymafia.org

Smart Memories

19

4.2 Mapping Hydra
The Hydra speculative multiprocessor enables code from a sequential

machine to be run on a parallel machine without requiring the code to be re-

written. A pre-processing script finds and marks loops in the original code. At

run-time, different loop iterations from the marked loops are then speculatively

distributed across all processors.

The Hydra multiprocessor hardware controls data dependencies across

multiple threads at run-time, thereby relaxing the burden on the compiler and

permitting more aggressive parallelization. As shown in Figure 10, the Hydra

multiprocessor consists of four RISC processors, a shared on-die L2, and

speculative buffers, which are interconnected by a 256-bit, read bus and a 64-

bit write-through bus. The speculative buffers store writes made by a processor

during speculative operation to prevent potentially invalid data from

corrupting the L2. When a processor commits state, this modified data is

written to the L2. The read bus handles L2 accesses and fills from the external

memory interface while the write-through bus is used to implement a simple

cache-coherence scheme. All processors snoop on the write-through bus for

potential RAW violations and other speculative hazards.

www.studymafia.org

Smart Memories

20

When a speculative processor receives a less-speculative write to a

memory address that it has read (RAW hazard), a handler invalidates modified

lines in its cache, restarts its loop iteration, and notifies all more-speculative

processors that they must also restart. When the head (non-speculative)

processor commits, it begins work on thread four loop iterations from its

current position and notifies all speculative processors that they must update

their speculative rank.

During the course of mapping Hydra we found that performance

degradation was introduced through three factors: memory configuration

limitations, algorithmic simplifications, and increases in memory access time.

Similar to the approach taken with Imagine, we conducted cycle-level

simulations by adapting the Hydra simulation environment to reflect the Smart

Memories tile and quad architecture.

www.studymafia.org

4.2.1 Memory configuration

www.studymafia.org

Smart Memories

21

In the Smart Memories implementation of Hydra, each Hydra processor

and its associated L1 caches reside on a tile. The L2 cache and speculative write

buffers are distributed among the four tiles that form a quad. Figure 11 shows

the memory mat allocation of a single tile. The dual-ported mats are used to

support three types of memory structures: efficient set-associative tags, tags

that support snooping, and arbitration-simplifying mats.

One quarter of the L2 resides on each tile. The L2 is split by address, so

a portion of each way is on each tile. Rather than dedicate two mats, one for

each way, for the L2 tags, a single dual-ported mat is used. Placing both ways on

the same tile reduces the communication overhead. Single-ported memories

may be efficiently used as tag mats for large caches, but they inefficiently

implement tags for small caches. For example, the L1 data tags are not

completely utilized because the tags only fill 2KB. The L1 data tags are dual-

ported to facilitate snooping on the write bus under the write-through

coherence protocol.

Finally, dual-ported mats are used to simplify arbitration between two

requestors. The CAM (not shown) stores indices, which point into the

speculation buffer mat, which holds data created by a speculative thread. Data

may be written to this mat by the tile’s processor and then read by a more

speculative processor on an L1 miss at the same time. In this case, the dual-

ported mat avoids complex buffering and arbitration schemes by allowing both

www.studymafia.org

requestors to simultaneously access the mat.

www.studymafia.org

Smart Memories

22

The Smart Memories memory mats architecture causes certain aspects

of the mapping’s memory configuration to differ from those of the Hydra

baseline [36], as detailed in Table 2. Compared to Hydra, the Smart Memories

configuration uses lower set-associativity in the L2 and L1 instruction caches to

maximize the memory mat utilization. The performance degradation due to

lower associativity is at most 6% as shown in Figure 12.

4.2.2 Algorithmic modifications

Algorithmic modifications were necessary, since certain Hydra-specific

hardware structures were not available. This section presents two examples

and their performance impact.

Conditional gang-invalidation

On a restart, Hydra removes speculatively modified cache lines in

parallel through a conditional gang-invalidation if the appropriate control bit of

the line is set. This mechanism keeps unmodified lines in the cache as opposed

to clearing the entire cache, thus improving the L1 hit rate. Although the

conditional gang-invalidation mechanism is found in other speculative

architectures, such as the Speculative Versioning Cache [37], it is not commonly

used in other architectures and introduces additional transistors to the SRAM

memory cell. Therefore, in the Smart Memories mapping, algorithmic

www.studymafia.org

modifications are made so the control bits in the L1 tag are not conditionally

gang-invalidated.

www.studymafia.org

Smart Memories

23

Under Hydra’s conditional gang-invalidation scheme, lines introduced

during speculation are marked as valid lines and are invalidated when a thread

restarts. In the Smart Memories configuration, lines introduced during

speculation are valid for a specified time period and are only permanently

marked valid if they are accessed before the processor’s next assigned thread

commits. Simulations show that this alternative to conditional gang-

invalidation decreases performance by up to 12% and requires two extra bits

in the tag.

L2 Merge

In Hydra, the L2 and speculative buffers are centrally located, and on an

L1 miss, a hardware priority encoder returns a merged line. Data is collected

from the L2 and less speculative buffers on a word-by-word basis where the

more recent data has priority. However, in Smart Memories the L2 and

speculative buffers are distributed. If a full merge of all less-speculative buffers

and the L2 is performed, a large amount of data is unnecessarily broadcast

across the quad network.

Simulations show that most of the data comes from either the L2 or the

nearest less-speculative processor on an L1 miss. Therefore, the L2 merge

bandwidth is reduced by only reading data from the L2 and the nearest less-

speculative processor’s speculative write buffer. Neglecting the different L2

latency under the Smart Memories memory system leads to a performance

degradation of up to 25%. The performance degradation is caused by a small

number of threads, which are restarted when they read the incorrect data on an

L2 access.

4.2.3 Access Times

The memory access times in the Smart Memories mapping are larger

due to two factors: crossbar delay and delay due to distributed resources.

Hydra has a 1-cycle L1 access and a 4-cycle L2 merge, while the Smart

www.studymafia.org

Memories configuration has a 2-cycle L1 access and 7-cycle L2 merge. The

delay through the crossbar affects the L1 access time, and since the L2 is

www.studymafia.org

Smart Memories

24

distributed, the L2 merge time is increased. The 2-cycle load delay slot is

conservatively modeled in our simulations by inserting nops without code

rescheduling; the resulting performance degradation is up to 14%.

The increased L2 access time has a greater impact on performance than

the L1 access time and causes performance degradations greater than 40% on

the m88ksim and wc benchmarks. The performance degradations on the other

benchmarks are less than 25%. The increase in the L2 access time is due to the

additional nearest-neighbor access on the quad interconnects.

4.2.4 Simulation results

Figure 12 shows the performance degradations caused by the choice of

memory configurations, algorithms, and memory access latency. The memory

access latency and algorithmic changes con-tribute the greatest amount of

performance degradation, whereas the configuration changes are relatively

insignificant. Since the Hydra processors pass data through the L2, the

increased L2 latency in Smart Memories damages performance the most for

benchmarks that have large amounts of communication between loop

iterations, such as compress, m88ksim, and wc.

In Figure 13, the Smart Memories and Hydra speedups are calculated

by dividing the execution time of one of the processors in Hydra by the

www.studymafia.org

respective execution times of the Smart Memories and Hydra architectures.

www.studymafia.org

Smart Memories

25

Scalar benchmarks, m88ksim and wc, have the largest performance

degradations and may actually slow down under the Smart Memories

configuration. Since Hydra does not achieve significant speedup on these

benchmarks, they should not be run on this configuration of Smart Memories.

For example, we would achieve higher performance on the wc benchmark if we

devoted more tile memory to a larger L1 cache.

5. CONCLUSION

Continued technology scaling causes a dilemma -- while computation

gets cheaper, the design of computing devices becomes more expensive, so new

computing devices must have large markets to be successful. Smart Memories

addresses this issue by extending the notion of a program. In conventional

computing systems the memories and interconnect between the processors

and memories is fixed, and what the programmer modifies is the code that runs

on the processor. While this model is completely general, for many applications

it is not very efficient. In Smart Memories, the user can program the wires and

the memory, as well as the processors. This allows the user to configure the

computing substrate to better match the structure of the applications, which

greatly increases the efficiency of the resulting solution.

www.studymafia.org

The initial tile architecture shows the potential of this approach. Using

the same resources normally found in a super scalar processor, we were able to

www.studymafia.org

Smart Memories

26

arrange those resources into two very different types of compute engines. One

is optimized for stream-based applications, i.e. very regular applications with

large amounts of data parallelism. In this machine organization, the tile

provides very high bandwidth and high computational throughput. The other

engine was optimized for applications with small amounts of parallelism and

irregular memory access patterns. Here the programmability of the memory

was used to create the specialized memory structures needed to support

speculation.

However, this flexibility comes at a cost. The overheads of the coarse-

grain configuration that Smart Memories uses, although modest, are not

negligible; and as the mapping studies show, building a machine optimized for a

specific application will always be faster than configuring a general machine for

that task. Yet the results are promising, since the overheads and resulting

difference in performance are not large. So if an application or set of

applications needs more than one computing or memory model, our

reconfigurable architecture can exceed the efficiency and performance of

existing separate solutions. Our next step is to create a more complete

simulation environment to look at the overall performance of some complete

applications and to investigate the architecture for inter-tile interactions.

www.studymafia.org

Reference

www.google.com

www.wikipedia.org

www.studymafia.org

